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Abstract: The development of communications and telecommunications infrastructure, 

followed by the extension of a new generation of smart distribution grids, has brought real-

time control of distribution systems to electrical industry professionals’ attention. Also, the 

increasing use of distributed generation (DG) resources and the need for participation in the 

system voltage control, which is possible only with central control of the distribution 

system, has increased the importance of the real-time operation of distribution systems. In 

real-time operation of a power system, what is important is that since the grid information 

is limited, the overall grid status such as the voltage phasor in the buses, current in 

branches, the values of loads, etc. are specified to the grid operators. This can occur with an 

active distribution system state estimation (ADSSE) method. The conventional method in 

the state estimation of an active distribution system is the weighted least squares (WLS) 

method. This paper presents a new method to modify the error modeling in the WLS 

method and improve the accuracy SVs estimations by including load variations (LVs) 

during measurement intervals, transmission time of data to the information collection 

center, and calculation time of the state variables (SVs), as well as by adjusting the variance 

in the smart meters (SM). The proposed method is tested on an IEEE 34-bus standard 

distribution system, and the results are compared with the conventional method. The 

simulation results reveal that the proposed approach is robust and reduces the estimation 

error, thereby improving ADSSE accuracy compared with the conventional methods. 
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1 Introduction1 

ODAY, state estimation (SE) is considered an 

essential part of energy management systems 

(EMS) in transmission control centers [1]. In fact, EMSs 

play an important role in monitoring and controlling 

transmission grids, and SE forms its framework [2]. In 

contrast, accurate monitoring of the grid in distribution 

systems has not been necessary due to their passive 
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operation, and they could easily be managed without the 

need for advanced control tools. As a result, advanced 

distribution grids have not been used in the last few 

years [3]. However, there have already been significant 

changes at the distribution system level that have 

affected their performance [4]. Most important of all, 

there has been an increase in DG units at the distribution 

grid level, which has invalidated the passive grid 

assumption [5]. In addition, bidirectional power flow 

has been made possible on the grid, and this requires 

more sophisticated and more active grid 

management [6]. Moreover, new actors, like electric 

vehicles, are entering distribution grids and they thus 

have significant effects on their performance. These 

vehicles, if not properly managed, can pose significant 

grid problems due to their high demand for charging [7]. 

Proper charging management of them can improve the 

performance of grids by contributing to voltage control 

and reducing grid losses. 

T 
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   In addition, electric vehicles, which can be regarded 

as energy storage devices and demand-side 

management, are expected to support the performance 

of future distribution grids [8]. All these options are 

generally called distributed energy resources. They are 

an essential solution for achieving higher investment 

returns on renewable energy sources and improving the 

efficiency and reliability of distribution grids. To 

coordinate the operation of this tool at the distribution 

system level, intelligent distribution management 

systems equipped with advanced control functions 

should be developed [9]. In this context, the SE will 

play a decisive role. In fact, for the proper functioning 

of control tools, it is essential to have in-depth 

knowledge of the operating conditions [10]. Superficial 
knowledge can lead to wrong decision-making by 

distribution management systems due to technical 

problems and unexpected costs. Therefore, like 

transmission systems, SE is essential for processing the 

measured data, increasing their accuracy, and providing 

a reliable picture of operating conditions for the higher-

level functions within distribution management 

systems [10]. The first step in SE is to collect input data 

from the distribution grid level. These data are the 

measurements and grid load information, which are 

collected in different ways. Measurements can be 

analog or digital. Digital measurements include 

switching mode, power switches mode, and tap changer 

in transformers. Analog measurements include active 

and reactive power, voltage phasor, current phasor, etc. 

in the distribution grid [11]. The measurements are 

divided into three categories: 1) real; 2) pseudo; and 

3) virtual measurements. The real measurements are 

data measured in real-time by sensors. The pseudo 

measurements are predicted or assumed from the load 

curves with high error percentage probability factors. 

The virtual type is not measured but generally known as 

zero injection node data [12]. SE is typically formulated 

as a WLS problem [13]. The main methods of SE are 

divided into two classes: the first is based on statistical 

criteria such as maximum similarity criterion, minimum 

variance criterion, and weighted least squares 

criterion [14]. The second is based on the formulation of 

the estimated load state [15]. The WLS method has been 

used in most SE studies [16], but the short-term 

variations of the load are not considered in the interval 

of data transmission, which is usually considered by 

default 15 minutes [17]. 

   References [18, 19] show that the use of SM improves 

the accuracy of SE but grid changes are not considered 

in the duration between two data transmissions and 

whenever the SE is required, the data collected at the 

beginning of the period are used, which impairs the 

precision of the method. It is shown in [20, 21] that 

smart meters, similar to transmission lines, improve the 

accuracy of the ADSSE, assuming that SM 

measurements are performed synchronously. However, 

if the behavior of all signals is assumed synchronous, it 

results in a lower quality of the ADSSE since the time 

difference between the measurements is significant. 

References [22, 23] consider this delay in order to 

increase the accuracy of SM measurements. In [22], the 

authors consider two levels of error (two or 10%) in 

measuring smart meters, whereas in [23], the authors 

consider all measurements made by the meters with a 

10% error. Moreover, in [24, 25], the patterns of short-

term variations of load and the time elapsed between 

sampling the measured parameters and executing the SE 

are not taken into account. Alternative methods in the 

process of implementing SE in a distribution system 

involve modeling grid loads using neural grids. The 

problem with this approach is that the training of the 

neural grid needs a reliable analysis of power flow 

across the distribution grid for a full year [26]. Studies 

in this field have shown that the researchers have 

covered the lack of grid information between two 

sequential measurements, taking into account a constant 

percentage of error, so the SE has not been highly 

accurate. 

   For the purposes of this paper, all sources of 

information summarized below: 

1) Remote terminal unit (RTU) measurements 

captured at HV-MV substations, collected by the 

SCADA system of the DMS at rates ranging 

from few seconds to about a minute (in general, 

much lower refreshing rates than those employed 

at transmission-level SCADAs [27, 28]). 

2) Distributed generation is already a reality and 

will increasingly spread in many radial feeders 

worldwide. Depending on the specific regulation 

and rated power, the production of distributed 

generators (DGs) is required to be monitored at 

different rates, ranging from day-ahead hourly 

forecasting to real telemetry periodically 

submitted to the DMS [29]. 

3) Distribution utilities have customarily kept a 

more or less elaborated database of historic load 

patterns/profiles. This information originates in 

several sources; including load forecasting, load 

allocation techniques in combination with feeder 

head measurements, characteristic power factor 

values of aggregated loads and systematic 

metering campaigns performed at specific points. 

The feeder-level state estimators can benefit from 

these not very precise values of P and Q, which 

can be used as pseudo-measurements to extend 

the observable area [30]. 

4) The latest and eventually most important 

addition to the list of information sources at the 

feeder level comes from the automatic meter 

reading/advanced metering infrastructure 

(AMR/AMI) infrastructure(typically smart meter 

concentrators), provided the right 

communication bridge is built between AMI and 

DMS subsystems. Nowadays this information is 

collected once a day in many systems but, 
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depending on bandwidth availability, snapshot 

latencies of up to 15 min have been reported [20, 

30]. 
   This paper introduces a new method and considers 

grid LVs in the time interval between two consecutive 

measurements and their transmission time to the 

supervisory control and data acquisition (SCADA). It 

also modifies the equation of error in the traditional 

WLS method. Finally, the results of the proposed 

approach are compared with those of the traditional 

approach. The rest of the paper has been organized as 

follows. Section 2 describes the weighted least squares 

approach. Section 3 deals with the modeling of the 

measurements and assumptions. Section 4 presents the 

approach proposed for correcting the error equation in 

the traditional approach. In Section 5, a simulation is 

performed on a 34-bus IEEE active distribution system, 

and the results are compared with the results of the 

traditional approach. 

 

2 Weighted Least Squares Method 

   A measured parameter from the active distribution 

grid can be considered as a random parameter with a 

Gaussian probability density function (GPDF). The 

mean value (MV) of the measured parameter is called 

the real value of this parameter, and the standard 

deviation (SD) of the random parameter indicates the 

measurement error. The GPDF for a random parameter 

is explained as [10, 31]: 
 

 
21

2
1

2

z
f z e



 

  
  

 
  (1) 

 

where z represents the vector containing the 

measurements, μ is the MV, and σ is the SD [26]. In a 

grid, the joint GPDF, which indicates the probability 

function of K independent measurements, can be 

represented as the product of exclusive GPDFs (where it 

is assumed that any measure is independent of the other 

measurements) as [10, 31]: 
 

         1 2 k i kf z f Z f Z f Z f Z    (2) 

 

where Zi represents the ith measurement and ZT = [Z1, 

Z2, …, Zk]. The function fk(z) is called the likelihood 

function (LF) for Z. For a given collection of measured 

data and their related SD, when the MVs of the 

unknown closest to their actual values are selected, the 

LF will approach its maximum value. Therefore, the 

aim here is to maximize the LF by allocating MVs that 

are nearest to the measured values. The MV for a 

measured electric parameter is a function of the SVs 

that can be presented as 
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   Given this assumption that the value of the mean noise 

for each measurement is zero, the described procedure 

is formulated as 
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in which without losing the generality, the logarithmic 

function is applied to simplify the optimization process. 

Since the last two components on the right side of (4) 

are constant, the process of maximizing fm(z) is equal to 
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   The above minimization scheme can be re-written in 

components of the residual ri from measure i that is 

described below [31] 
 

i i ir z    (6) 
 

where the MV μi can be defined as the function hi(x), a 

nonlinear function that relates the ith measurement to 

the system state variable vector x. The square of any 

remaining ri
2 is weighted using the coefficient Wii = σi

–2, 

which inversely correlated with the error variance 

considered for that measurement. Therefore, the 

problem of minimizing (5) would be equivalent to 

minimizing the sum of the weighted coefficients of 

squares remaining or solving the optimization problem 

for the SVs vector x, which is stated as follows 
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               1,2, ,i i iz h x r i k     (8) 

 

The above optimization problem is solved by an 

estimator called the WLS estimator for the state vector 

x. 

 

3 Modeling the Measurements and Assumptions of 

the Problem 

   Consider the set of measurements obtained by the 

vector z [10]: 
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where the function hi(x) is the nonlinear function which 

relates the measurement of i to the system SV vector x, 

and ei is the measurement error vector. 
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3.1 The Measurement Function h(xk) 

   The measurements are of different types. The most 

common measurements are power flow between lines, 

the active and reactive power injected into the buses, the 

voltage magnitude in the buses, and the current 

magnitude in the lines. These measurements can be 

described from the view of SVs applying either the 

Cartesian coordinate system or the Polar coordinate 

system. When applying the polar coordinate system for 

a grid consisting of K buses, the SVs vector will contain 

(2K-1) members, K voltage amplitude of the buses, and 

(K-1) phase angles of the buses voltage, in which a bus 

is considered as the reference bus, and the phase angle 

for that is assigned an arbitrary value, such as zero. 

Where bus 1 is selected as the reference bus, so the SVs 

vector x will be as follows [10, 31] 
 

2 31 2
, , , , , , ,  

T
T

KK
x V V V          (10) 

 

The relationships for the types of measurement 

mentioned above are described below: 
 Reactive and active power injection at bus i: 
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 Reactive and active power flow from bus i to bus j: 
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 Current flow magnitude from bus i to bus j: 
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3.2 Assumptions of the Problem 

   Given the statistical characteristics of measurement 

errors, the following assumptions usually are taken into 

account in solving the problem [10, 31, 32]: 

 E(ei) = 0    i = 1, 2, …, m 

 Measurement errors are independent:E(ei, ej) = 0. 

Hence,    2 2 2

1 2. , , ,T

mcov e E e e R diag         . 

   The SD σi for any measurement i is computed to show 

the expected precision of each SM used. The estimator 

of the WLS method must minimize the following 

objective function. 
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At least, the first-order optimality conditions must be 

satisfied. These can be summarized as follows: 
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 is the Jacobin matrix of 

measurements. The structure of the Jacobian matrix is 

as follows: 
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The nonlinear function g(x) extended around the state 

variable vector xn into its Taylor series. 
 

       0n n ng x g x G x x x      (19) 

 

By ignoring the higher-order in the expressed Taylor 

expansion, an iterative solution is obtained known as the 

Gauss-Newton method, as shown below: 
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where n is the iteration index and xn is the solution 

vector at iteration n. 
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where G(x) is called the gain matrix. The properties of 

the gain matrix are positive definite, symmetric, and 

sparse provided that the grid is entirely observable [10, 

32]. The gain matrix is obtained using the Jacobian 

matrix of measurements, H and the covariance matrix of 

measurement error, R. 

   Given the assumption of measurements independent, 

the covariance matrix will be a diagonal matrix whose 

entries on the main diagonal will be filled with the 

variance of the measurements. The gain matrix is 

formed as follows: 
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  1n TG x H R H   (23) 

 

The gain matrix G(x) is generally not reversed (a matrix 

will generally be inverted when it is full rank, whereas 

here G(x) is quite sparse). Matrix G(x), to solve this 

problem, is decomposed into its triangular factors, and 

the below sparse linear sets of equations are solved 

applying the forward/back replacements (read [10] for 

more information) at any iterations n: 
 

     1 1. .n n T n nG X x H x R Z h x       
   

  (24) 

 

where ∆xn+1 = xn+1–xn. 
 

3.3 Cholesky Analysis of G matrix 

   The matrix G(x) can be written as the multiplying of a 

lower triangular sparse matrix in the transpose of that 

matrix. This process is known as the Cholesky 

decomposition of the matrix G. The decomposed form 

of G is as follows [10, 34, 35]: 
 

. TG L L   
(25) 

 

   It must be mentioned that the Cholesky analysis may 

not exist for grids that are not observable. Triangular 

factors of Gain matrix G(x) are not unique, and their 

sparsity highly depends on the way the analysis is 

carried out. Equations (1)-(25) are related to the 

fundamental relationships in the WLS method and the 

state estimation, which have been taken from [10], [31-

35]. In most references focusing on a state estimation 

problem, these relationships have been expressed in 

brief or full details as required. In this paper, we try to 

develop a WLS method formulation aiming at 

improving the state estimation problem. Therefore, to 

clearly explain the changes made in the conventional 

method formulation as well as comparing and analyzing 

the results before and after the modifications, the 

fundamental relationships of the WLS method and state 

estimation were expressed. 

 

4 Proposed Modified  WLS State Estimation 

Algorithm  

   SE by the WLS method involves solving the iteration 

of the given normal equations by (23). For the state 

vector x0, an initial guess must be made. In the active 

distribution system, depending on the SVs considered to 

solve the state estimation problem, the initial guess will 

include either voltage or current phasors. In related 

references, the determination of the initial guess of SVs 

in the SE problem is carried out in two ways: 

 Using network power flow to determine the initial 

guess of SVs; 

 Using flat values as the initial guess for the SVs. 

   In this paper, tested both methods, ultimately 

determining the initial guess in the convergence of the 

SE problem was ineffective. Therefore, in this paper, 

the initial guess is related to the voltage phasor, and all 

bus voltages are considered 1.0 per unit and in phase 

with each other. In the following, the method proposed 

in this paper is presented to modify the error equation 

and improve the results of SE in the WLS method. 

 

4.1 Modified Error Equation in the WLS Method 

   According to the existing procedures, the sampling 

time of data varies depending on the smart meters. In 

this paper, it is assumed that the sampling time is 15 

minutes. The  variable represents the time elapsed 

since the last update. Given these, the variable can 

be anywhere between 0 to 900 seconds. As a result, the 

MV and SD employed in the ADSSE process for the 

proposed method can be calculated as follows: 
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where (0)
iLV , ( ) 

i maxLV LUt , (0)
iLV , and 

max
( ( ))

iLV LUt  are the calculated SD and mean of LV for 

the starting and ending points of the measurement 

interval, and 
maxLUt denotes the time interval between the 

two sequential samplings. Using (26) and (27), SD and 

MV can be calculated for each point within the 

sampling interval. Therefore, the ADSSE process can be 

implemented at each point within the sampling interval. 

In order to implement the proposed method, SD and 

mean of LV for any sampling time should be calculated 

based on the grid historical data. While ADSSE is 

running, the variance of any measurement is updated by 

assessing (
2 2 2

i i itotal m LV    ) and results in an update 

of the covariance matrix R. As stated, in (4), it is 

assumed that the MV of error in the noise measurement 

is zero. 

   However, in this paper, to achieve the maximum 

accuracy, the MV of the total error is computed based 

on (26) and (28). As a result, the WLS method 

formulation in the proposed approach is modified as 

follows: 
 

 Z h x lv     (29) 

 

where Δlv is the short-term LV vector that is included in 

the main equation of the regular WLS method to 

enhance accuracy and model the effect of LVs in short-

term periods. Thus, the objective function in (4) should 

be modified to: 
 

    max   max  log f z f z    
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where
iLV is the mean of load variation computed by 

(26). So, the measured value in each measurement must 

be subtracted from the mean of the error, and (17) is 

corrected as follows: 
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(31) 

where 
ii LV    is a vector referring to the mean of 

all the LV errors. A flowchart of SE by the WLS 

method is shown for both the proposed and the 

conventional method in Fig. 1. 
 

5 Simulation Results 

   In this section, the effectiveness of the proposed 

approach is validated by using an IEEE 34-bus standard 

active distribution grid. In this paper, there is a mix of  
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Fig. 1 Flowchart of the weighted least squares method with the traditional and proposed approach. 
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load types such as urban load, rural load, and industrial 

load. Also, there are two units of DG, which are diesel 

generator type. In this paper, we tested a standard IEEE 

34-bus distribution system in that the number and type 

of measurement devices and their installation spots as 

well as the number of DG units, sizes and spots were 

predetermined and we made no changes in them. The 

forward/back power flow, which is suitable for 

distribution systems, is applied to the case study in the 

first step. Any time of day, the SE operation is 

performed on the active distribution system; the values 

obtained from the SE are compared with the values 

obtained from the power flow as real values of the grid 

SVs. Given the fact that the load of the grid is 

constantly changing, it is necessary to run the power 

flow with new values of the loads whenever the 

operator performs SE. There are few tests to verify that 

a collection of data has been distributed normally [36-

38]. Regarding the statistical tests (the Anderson-

Darling and Shapiro-Wilk tests) on grid load changes, it 

was found that LVs had a normal distribution. 

Therefore, according to different load patterns, LVs in 

the program for power flow were considered to have 

normal distribution as shown in Fig. 2. According to the 

load pattern, three-time ranges are considered. The time 

interval is based on low-load (between 00:00 AM and 

07:00 AM), high-load (between 07:00 am and 07:00 

pm), and mid-load (between 07:00 pm and 12:00 pm) 

calculations. As stated, the obtained values of the 

forward/back power flow calculation are used as the 

reference or actual values of the measured parameters in 

the grid. The number of SVs in the grid is 67, which 

includes 34 voltage magnitudes and 33 phase angles. 

   Measurements can be of a variety of types. In this 

paper used measurements are the line power flows, bus 

power injections and line current magnitudes. It is 

assumed that measuring devices transmit data to the 

control center every 15 minutes; meanwhile, there is no 

information about load changes in the grid. Two 

scenarios are presented below. Scenario I considers the 

traditional method while Scenario II presents the 

method proposed in this paper. 
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Fig. 2 The load variation pattern curve for sample bus 7 from 

the studied grid for 24h. 

Scenario І: In this case, given that there is no 

information within the 15-minute interval of the grid, 

the values measured at the beginning of each interval 

are used to estimate SVs. The program is executed 

every one minute for 24 hours for 24-hour. Afterward, 

for each of the three periods of low-load, mid-load, and 

high-load, the sample time is considered for the display. 

For the low-load time interval, the moment (01:34:00), 

for the peak consumption time interval, the moment 

(10:47:00) and for the mid-load time interval, the 

moment (19:59:00) is displayed as the sample. The 

voltage profile obtained from the instantaneous power 

flow and the values of SVs estimated by the traditional 

method for the three sample moments are shown in 

Fig. 3. 
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Fig. 3 Voltage profile curve in ideal ADSSE and estimated 

with the traditional method; a) for the time 1:34:00, b) for the 

time 10:47:00, and c) for the time 19:59:00. 
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In this paper, the two-norm error of ADSSE that is 

defined below is used for all bus voltages. 
 

 
2

1

 
nbus

est act

i i

i

error v v


    (32) 

 

where nbus is the number of grid buses, vi
est is the 

voltage magnitude estimated for the i-th bus, and vi
act is 

the real value of voltage magnitude for the i-th bus. 

Equation (32) is also used for the phase angle. Figs. 4 

and 5 depict the two-norm error for the actual and 

estimated values of SVs for three sample times. 
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Fig. 4 The two-norm error for the actual and estimated values of 

buses voltage with the traditional method; a) for the time 

1:34:00, b) for the time 10: 47:00, and c) for the time 19:59:00. 

Fig. 5 The two-norm error for the actual and estimated values of 

phase angles with the traditional method; a) for the time 1:34:00, 

b) for the time 10:47:00, and c) for the time 19:59:00. 
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Scenario Π: In this scenario, the proposed method is 

considered. Variations of load at time intervals without 

measurement are considered by inserting (26)-(28) in 

the previous equations which are related to the WLS 

method and finally the error equation is corrected 

by (29). According to the first scenario, in this case, the 

program is running all day and within a time interval of 

one minute. Sampling times in this scenario are similar 

to those in Scenario I. Fig. 6 shows the voltage profile 

obtained from the instantaneous power flow and the 

values of SVs estimated by Scenario II for the three 

sample moments. In addition, Figs. 7 and 8 present the 

two-norm error for the actual and estimated values of 

SVs in Scenario II for the three sample moments. 
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Fig. 6 Grid voltage profile in actual and estimated ADSSE with 

the proposed method; a) for the time 1:34:00, b) for the time 

10:47:00, and c) for the time 19:59:00. 

Fig. 7 The two-norm error for the actual and estimated values of 

buses voltage with the proposed method; a) for the time 1:34:00, 

b) for the time 10:47:00, and c) for the time 19:59:00. 
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   The results obtained from the two scenarios are 

compared in Fig. 9. As expected, by applying the 

proposed modification in the SE algorithm, the 

estimated values of SVs are closer to the actual value. 

Also, the proposed method has a lower error rate than 

the traditional method. 

   Figs. 10 and 11 compare the errors obtained from the 

estimated values and the real values for the voltage 

phasor (including amplitude and phase angle) in the test 

distribution system for two scenarios, respectively. As  
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Fig. 8 The two-norm error for the actual and estimated values of 

phase angles with the proposed method; a) for the time 1:34:00, 

b) for the time 10:47:00, and c) for the time 19:59:00. 

Fig. 9 Comparing the grid voltage profile in base state and 

estimated values in two scenarios; a) for the time 1: 34:00, b) for 

the time 10:47:00, and c) for the time 19:59:00. 
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expected, the best case for ADSSE is achieved under the 

exact case (ideal) in which it has been assumed that all 

SMs would always be updated in real-time (see Figs. 10 

and 11, “Exact case”). Load changes throughout the day 

are also considered, so the ADSSE error rate also 

changes accordingly (see Fig. 2). When the LVs rate is 

high, the error rate in ADSSE also increases, i.e., in the 

morning when the load is increased and in the evening 
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Fig. 10 Percentage error of the estimated values of the voltage 

magnitude for exact ADSSE, traditional ADSSE and proposed 

ADSSE; a) for the time 1:34:00, b) for the time 10:47:00, and c) 

for the time 19:59:00. 

Fig. 11 Percentage error of the estimated values of the phase 

angle for exact ADSSE, traditional ADSSE and proposed 

ADSSE; a) for the time 1:34:00, b) for the time 10:47:00, and c) 

for the time 19:59:00. 
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Table 1 Statistical performance of ADSSE error for a typical load curve in the IEEE 34-bus active distribution grid. 

 Best DSSE(least total error) Mean DSSE(total error) Worst DSSE(most total error) 

Sample Time 1:34' 10:47' 19:59' 1:34' 10:47' 19:59' 1:34' 10:47' 19:59' 

Exact ADSSE 1.1550 0.9033 0.4457 1.7335 1.1191 0.5143 1.1877 1.1550 0.5630 

Conventional Method 2.5900 3.5600 3.1100 3.746 5.836 6.373 4.6700 7.8600 9.4800 

Proposed Method 1.2900 2.0300 1.765 2.431 4.204 3.821 3.3400 6.1400 6.8100 

Improvement of ADSSE 

accuracy by the proposed 

DSSE compared to the 

traditional ADSSE [%] 

50.19 42.97 43.24 35.1 27.96 40.04 28.47 21.88 28.16 

 

when the load is decreased (see Figs. 10(b) and 11(b)). 

However, when LVs are low, the error rate in ADSSE is 

small, and the results of the proposed ADSSE and the 

traditional ADSSE are approximately identical, which 

can be seen from Figs. 10(a) and 11(a). While the 

proposed ADSSE and traditional ADSSE have almost 

the identical error in their accuracy, the proposed 

approach treats the measurements in a different way by 

suitably adjusting their variances, thereby providing 

higher precision. In addition, the best mean and worst 

performances for both scenarios are summarized in 

Table 1. As can be observed in Figs. 10 and 11 and 

Table 1, the total error of ADSSE in Scenario І 

(traditional approach) varies from 2.59 to 9.48 whereas 

it varies from 1.29 to 6.81 in Scenario ІІ. 

   For better understanding, Table І also presents the 

percentage of error reduction obtained from the 

proposed ADSSE approach as compared to the 

traditional ADSSE approach. As can be seen, the 

proposed method improves the precision of ADSSE by 

an average of 35.1% for the low-load time interval, 

40.04% for the mid-load time interval, and 27.96% for 

the peak consumption time. The results indicate that the 

method presented in this paper has considerable 

potential for improving the quality of ADSSE in active 

distribution grids. 

 

6 Conclusion 

   Measurement devices located in distribution grids 

measure electrical variables asynchronously. Therefore, 

there is an important challenge in using these 

measurements in SE algorithms because they are 

designed on the assumption that the measurements are 

performed synchronously. This paper proposed a 

solution to this problem. Initially, two well-known 

statistical tests were used to prove that the changes in 

the electrical loads are normally distributed in the short 

run. Based on this achievement, a new method was 

proposed in that MV and SD of measurement error in 

the data sent through smart meters are adjusted and 

thereby the problem of non-synchronicity in data 

transmission and expiration of measurements between 

two consecutive sampling interval due to lack of 

measurement is resolved. In order to show the 

effectiveness of the proposed method, it was compared 

to the traditional distribution system state estimation. As 

previously mentioned, in the traditional method, the 

non-synchronicity in measurements is not taken into 

account and also, whenever a DSSE between the two 

consecutive intervals is performed, the measured data is 

used at the beginning of the interval. According to the 

simulation results, the quality of the proposed method is 

quite evident compared to the traditional method. Based 

on the comparisons whose results are summarized in 

Table 1, the accuracy of the state estimation has been 

improved by 50% in the best condition and by about 

21% in the worst condition. The advantage of the 

proposed method is that it can be easily incorporated 

into WLS-based state estimators already used by 

electric companies without any major changes in their 

framework. Also, as any iteration uses the values 

obtained from the previous iteration, the convergence 

speed of the algorithm is also increased. Based on the 

results achieved in this paper and the benefits of the 

proposed method, it is believed that the proposed 

method can be an essential tool for the implementation 

of SE in active distribution systems. 
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