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Abstract: In this paper a new mathematical model is developed for the dynamics between 
tumor cells, normal cells, immune cells, chemotherapy drug concentration and drug 
toxicity. Then, the theorem of Lyapunov stability is applied to design treatment strategies 
for drug protocols that ensure a desired rate of tumor cell kill and push the system to the 
area with smaller tumor cells. Using of this theorem a condition for drug administration to 
patients so that solution of the system of equations always tends to tumor free equilibrium 
point is proposed. 
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1 Introduction 1 
The Cancer is one of the greatest killers in the world, 
particularly in western countries, although medical 
activity has been successful, despite great difficulties, at 
least for some pathologies. A great effort of human and 
economical resources is devoted, with successful 
outputs (but also with failures), to cancer research with 
particular attention to experimental and theoretical 
immunology [1]. A specific area of study is that of the 
immune system dynamics. Mammalian immune system 
can be considered one of the most complex systems 
nature has ever created. It is in charge to fight against 
all kind of potentially dangerous agent which destroys 
the anatomic barriers of the host organism. The immune 
system is composed by a variety of organs, cells and 
molecules acting in concert to achieve the basic 
functions of the immune system, that is, recognition, 
response and memory. When the immune system does 
not work properly the results is a disease. In the case of 
a tumor, the immune system should be able to detect the 
anomalous cells and kill them. Failure in this task 
results in an uncontrolled growth of the tumor mass [2]. 

Mathematical models can provide insights into the 
dynamics of immune system in vivo. A simple model 
may play a significant role in the development of a 
better understanding of the disease and the various drug 
therapy strategies used against it. Mathematical 
modeling of immune system has a long history; in 1973 
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Bell [3] proposed a model consisting of a system of two 
equations based on the classic predator-prey interaction. 
Later in 1973, Aroesty et al. [4] developed a model that 
more accurately characterized the tumor growth rate. In 
1986 Boer and Hogeweg [5] proposed a model that 
describes the immune system response to tumor cells. In 
1994 Kuznetsov et al. [6] modeled interaction between 
tumor cells and immune cells. Recently, there are a lot 
of researches that develop the various mathematical 
descriptions of cancer and the immune responses [4, 6-
10]. 

One of the important goals for a mathematical model 
is to find a desirable treatment protocol for patients. 
Also, mathematical models have been constructed to aid 
in describing the mechanisms of cytotoxic drug 
availability and action on tumor cell populations and in 
expressing constraints of drug use due to the subsequent 
toxicities. Using of optimal control theory to design 
optimal chemotherapy strategies is a routine task. Many 
authors have used this theory to design treatment 
protocol, see for example [11-15]. But regarding to 
parameters of system which are different from one 
patient to another, solution for optimal control problem 
should be carried out for each patient separately. Also, 
solution for an optimal control problem is not an easy 
task and requires spending lots of time. If we want to 
have drug delivery by using mathematical models 
applicably, by acceptation of a model for cancer growth 
if doctors want to use the model for their patients 
inevitably they must be familiar with solution for 
optimal control problems while this is a difficult task. 

In this research a new mathematical model is 
suggested for the dynamics between tumor cells, normal 
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cells, immune cells, chemotherapy drug concentration 
and drug toxicity. In continuing in order to gain 
protocol treatment, instead of using the optimal control 
theory, Lyapunov stability theorem has been used. 
Using this method provides a technique for drug 
administration based on system’s parameters (different 
patients). 
 
2 Mathematical Model 

Mathematical models of tumor-immune interactions 
provide an analytic framework in which to address 
specific questions about tumor-immune dynamics and 
the response of the tumor diseases to treatment. The 
model we present tracks three cell populations, one drug 
concentration in the bloodstream and a term of drug 
toxicity. It is much like the model developed by de Pillis 
and Radunskaya [16], but differs in two respects. First, 
the model presented here includes a term of drug 
toxicity. Second, in order to simplify the process of 
finding Lyapunov function, the dose–response 
dynamics is represented by mass-action term instead of 
exponentially decaying term and also the effects of drug 
on normal and immune cells have been neglected, in 
fact measure of toxicity of drugs is calculated in one 
term separately. 

The assumptions that were used to determine the 
model equations are outlined below, followed by a 
discussion of the model equations themselves. 

• Both tumor and normal cell populations are 
homogeneous, i.e., their growth dynamics 
are the same for all parts of the population. 

• Both tumor and normal cell populations 
obey logistic dynamics. 

• Tumor cells and Normal cells compete for 
available resources. 

• Tumor cells and immune cells compete in a 
predator-prey fashion. 

• It is assumed that the drug is delivered by 
infusion, and there is an instantaneous 
mixing of drug with plasma, as well as an 
immediate delivery of the drug to the tumor 
site. 

• The cytotoxic drug kills only tumor and 
effect of that on normal and immune cells 
has been neglected. 

• The rate of metabolism of drug inside the 
body is assumed to be directly proportional 
to the cumulative drug toxicity τ with a 
proportion constant η. 

The cell populations, drug toxicity and drug 
concentration in this model at time t are denoted by: 

• N(t), Normal cell population, 
• T(t), Tumor cell population, 
• I(t), Immune cell population, 
• τ(t), drug toxicity, 
• u(t), chemotherapy drug concentration. 

The model is given by the following set of ordinary 
differential equations: 
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These equations have the general initial conditions 
N(0) = N0, T(0) = T0, I(0 )= I0, τ(0)= τ0 and u(0) = u0, 
where each initial value is positive. 

The first equation describes the rate of change for 
the normal cell population. The normal cell population 
is assumed to grow logistically (term 1), while normal 
cells are killed by the tumor cells through a mass-action 
dynamic, -c4TN. The second equation marks the rate of 
change of the tumor cells. The tumor cell population 
grows logistically. The reaction of tumor cells to 
immune cells and normal cells can result in the death of 
tumor cells, represented by the two competition terms, -
c2IT and -c3TN. Finally, chemotherapy affects tumor 
cell population through a mass-action dynamic of the 
form -a2uT. Equation (3) describes the rate of change 
for the immune cell population. The immune cells have 
a constant source rate s, while death is proportional to 
the population of immune cells through the term –d1I. 
Immune cells are also recruited by tumor cells through a 
Michaelis–Menten term, ρIT/(α+T), which serves to 
provide a saturation effect. Additionally, immune cells 
are inactivated through contact with tumor cells 
according to a mass-action dynamic –c1IT. The 
relationship between the cumulative drug toxicity and 
the drug concentration inside the body, Equation (4), is 
added to the aforementioned mathematical model. The 
cumulative drug toxicity τ increases with the 
concentration of drug, u, and decreases with the rate of 
metabolism of drug inside the body. The rate of 
metabolism of drug inside the body is assumed to be 
directly proportional to the cumulative drug toxicity τ 
with a proportion constant η. The concentration of drug 
is assumed to decay exponentially. Equation (5) 
describes the change of drug concentration. The rate to 
deliver drug is denoted by the variable V where the half-
life of drug is represented by γ which depends on the 
biochemical property of the drug. 

The developed mathematical model in this paper has 
many similarities with the famous model of de Pillis and 
Radunskaya [16], but there are two main differences 
between them. First, one new term for drug toxicity has 
been added to the model. Second, instead of expressing 
the dynamic response of the drug with an exponential 
term, it is given with a mass-action term. Also, drug 
toxicity effects on healthy and cancerous cells are 
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neglected. In fact, amount of drug toxicity is calculated 
by another term separately. 
 
3 Nondimensionalization and Analysis 

For ease of analysis, we consider the system of 
Equations (1)-(4) in the absence of treatment. To further 
clarify the dependence of the system on parameters and 
to find the Lyapunov function, we non-dimensionalize 
the system as follows. Let the nondimensionalized state 
variables be: 
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Then, dropping the over-bar notation for 
convenience, we obtain the following scaled model: 
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with initial conditions: N(0) = N0, T(0) = T0, I(0 )= I0, 
τ(0)= τ0. Studying equilibria of the system and their 
stability is an important task because the state variables 
lie on one of these points after treatment. 

This system of equations has several equilibrium 
points. These equilibrium points are classified in 
summary as Equations (10)–(13). 
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Equilibrium points: 

• )0,1,0,0(
d

, normal and tumor cells are both 

destroyed (death equilibrium). 
• )0),(,,0( afa , normal cells are destroyed 

and tumor cells remain (death equilibrium). 

• )0,1,0,1(
d

, tumor cells are destroyed and 

normal cells remain (tumor free 
equilibrium). 

• )0),(,),(( bfbbg , depending on parameters 
of system we have 1, 2 or 3 equilibrium 
points. Now if values of g(b) and b are in 
acceptable rang for normal and cancerous 
cells, these equilibrium points could be 
desirable points for us. 

One could see in some of these equilibrium points 
normal cells are destroyed completely, these points are 
called death points. In other points both normal and 
tumor cells exist but there is only one point which all 
tumor cells are destroyed and normal cells survive 
completely. This point is called tumor free point. 

Disregarding that tumor free point is stable or 
unstable, efforts of doctors have been always oriented to 
reach to this point. Because complete therapy of disease 
and complete destruction of tumor cells happen at this 
equilibrium point. Meanwhile it seems to be necessary 
to find a therapeutic protocol which, with neglecting 
what the initial conditions of system are, be able to 
incline the solution of equations toward this stable 
point. For this purpose we need a drug administration 
method which could grantee (at least at presence of 
drug) the global stability of this equilibrium point. 
 
4 Global stability of the Tumor Free 

In this section, we briefly discuss how to apply 
Lyapunov's direct method for designing desirable drug 
protocol. This technique requires hypothesizing a 
Lyapunov function candidate and then finding a control 
law to make this candidate a real Lyapunov function. 
Lyapunov function definition: if, in a ball BR, the 
function V(x) is positive definite and has continuous 
partial derivatives, and if its time derivative along any 
state trajectory of system is negative semi-definite, i.e,  

0)( ≤xV& , then V(x) is said to be a Lyapunov function 
for the system. 
Global stability: Assume that there exists a scalar 
function V of the state x, with continuous first order 
derivatives such that 

• )(xV  is positive definite  
• )(xV&  is negative definite 
• ∞→∞→ xasxV )(  

then the equilibrium at the origin is globally 
asymptotically stable. 
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Theorem: The tumor free steady state, E0 = (1, 0, 1/d, 0, 
0), is globally asymptotically stable if: 
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Proof: Define a Lyapunov function, 
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Along the trajectories of system, we have: 
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After simplifying equations, one could have: 
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and then 
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Finally, 
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In order that )(xV&  be negative definite all negative 
equations should be negative as well, so we have: 
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If values of f, g, c, b and a are selected as bellow 
)(xV  function will be a Lyapunov function. 
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If b is assumed very big value and f, g, c and a are 
assumed very small values then we have: 
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To have )(xV&  as negative definite we should have: 
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By keeping following condition one could guarantee 
that solution of equations goes to tumor free equilibrium 
point. 
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5  Simulations for Lyapunov-based Drug 
Administration 

In this part the behavior of developed mathematical 
model for 2 patients based on Lyapunov theorem is 

considered which onetime is in absence of 
chemotherapy and another time is with presence of 
chemotherapy. Parameters of system for these 2 persons 
are such that for first person tumor free equilibrium 
point is a stable point and for second one tumor free 
point in an unstable equilibrium point. These parameters 
are given for 2 persons in Table 1. Most of the 
parameters were taken from the ref [16], and these are 
noted in the Table 1. 

 

Table 1. Parameter values for patient 1 and patient 2 

Reference Description Units P2 P1 Parameter 

[16] Fractional tumor cell kill by chemotherapy day-1 0.3 0.3 a2 
[16] 1/b1 is tumor carrying capacity cells-1 1 1 b1 

[16] 1/b2 is normal cells carrying capacity cells-1 1 1 b2 

[16] Fractional immune cell kill by tumor cells cell-1 day-1 1 1 c1 
Estimated Fractional tumor cell kill by immune cells cell-1 day-1 0.2 0.5 c2 
[16] Fractional tumor cell kill by normal cells cell-1 day-1 1 1 c3 
[16] Fractional normal cell kill by tumor cells cell-1 day-1 1 1 c4 
[16] Tumor growth rate day-1 1.5 1.5 r1 
[16] Normal cells growth rate day-1 1 1 r2 
[16] Immune cells death rate day-1 0.2 0.2 d1 
[16] Constant source of immune cells cell day-1 0.33 0.33 s 
[16] Steepness coefficient of the immune cell 

recruitment curve 
cell 0.3 0.3 α 

[16] Maximum immune cell recruitment 
rate by tumor cells 

day-1 0.01 0.01 ρ 

[16] Rate of drug toxicity decay day-1 0.5 0.5 η 
[16] Rate of chemotherapy drug decay day-1 0.9 0.9 γ 

5.1 Patient 1 
In this part first the system of equations for patient 1 

with initial condition of I(0)=.1, T(0)=.25 and N(0)=1 
in absence of chemotherapy has been solved. As can be 
observed from Fig. 1, although the tumor free point for 
patient 1 is a stable point but initial conditions of patient are 
not in the attraction region of tumor free equilibrium point, 
so the solution of equations proceed to one of the 
equilibrium point of system which has many cancerous cells. 

In addition the system of equations for the patient 1 
with aforementioned initial conditions but this time in 
the presence of chemotherapy and using of drug 
administration condition, extracted from Lyapunov 
stability theorem, is solved. As shown in Fig. 2 solution 
of the system of equations are guided toward tumor free 
equilibrium point in which after approximately 40 days 
all cancerous cells are destroyed and healthy cells are at 
desirable situation. In Fig. 3 the method of drug 
administration to patient using of condition resulted 
from Lyapunov theorem is shown. One could see that 
for 3 days and approximately within days 2, 4 and 5 
drug is given to patient. As system stands in attraction 
region of tumor free there is no need for drug 

administration and solution of equations goes 
spontaneously toward tumor free equilibrium point. 

 
5.2 Patient 2 

In this part the system of equations for parameters of 
patient 2 (Table 1) with initial conditions of I(0)=.1, 
T(0)=.25 and N(0)=1 in absence of chemotherapy is 
solved. The tumor free equilibrium point for given 
parameters of patient 2 is an unstable equilibrium point 
and as shown in Fig. 4 finally system tends toward one 
of the death equilibrium points. 

In addition the system of equations for the patient 2 
with selected initial conditions and in the presence of 
drug and with use of drug administration condition 
extracted from Lyapunov stability theorem is solved. 
Although, tumor free equilibrium point as shown in Fig. 
5 is unstable equilibrium point in absence of drug but in 
presence of drug and after 10 days stands at this 
equilibrium point. Fig. 6 is representative of the method 
for drug delivery for complete therapy of disease. As 
shown for keeping the system at this point drug 
administration must be done continuously. But 
continuum drug administration regarding harms of drug 
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and amount of produced poison is an impossible task. 
Also, doctors continue chemotherapy until the number 
of cancerous cells is greater than 107. 

 
5.3 Modifying the Condition of Drug 

Administration 
In this part in accordance with doctors work and 

making the method of drug administration much more 
actual another condition is added to condition of drug 
administration. This condition says, drug administration 
is allowed until the number of cancerous cells are 
greater that 107. Recalculation of equations for patient 2 
by putting new condition into consideration is shown in 
Fig. 7. As shown in this figure after the number of 
cancerous cells becomes less than 107, the drug 
administration (Fig. 8) will be stopped. In addition, 
good consistency is observed between the behavior of 
developed model and other known behavior from 
cancerous tumors (including growth, death and 
dormancy. All of these behaviors are given in Fig. 7. In 
this figure, cancerous cells have started growing 
(growth period) and after drug delivery their amount is 
reduced (death period) and at the end when the drug 
delivery is stopped they start growing again (dormancy 
period). 

As equilibrium point is an unstable point after 
sometime cancerous cells start growing again and their 
amount reach to a considerable amount. For solving this 
problem 2 solutions are presented. First, after that 
number of cancerous cells passed over certain amount 
chemotherapy can be applied again. The weak point of 
this method is that drug administration to patient is 
continuing. Second way for such patients is to apply 
vaccine therapy after chemotherapy. Vaccine therapy 
causes parameters of system to change and as result 
tumor free point will be stable point. In future works 
vaccine therapy will be considered for this model. 

 
6 Conclusions 

In this article a new mathematical model is proposed 
for studying the behavior of cancerous cells in presence 
of chemotherapy. Using of Lyapunov stability theorem 
a condition for therapy of cancerous patients is 
proposed. One could see with the use of this method of 
drug administration, system of equations solution 
always tends to tumor free equilibrium point. It could be 
observed that with use of extracted drug administration 
condition, there is no need for calculation of attraction 
regions at free tumor equilibrium point. Drug 
administration will be stopped after system enters 
attraction regions of free tumor point. This task causes 
decline of amount of drug administration during the 
therapy. Difficulty to find Lyapunov candidate function 
is one of the drawbacks of this method. In future works 
effect of vaccine therapy in combination with 
chemotherapy on the model will be studied. 
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Fig. 4. Patient 2: behavior of the system of equations in 
absence of chemotherapys 

 
Fig. 5. Patient 2: behavior of the system of equations in 
presence of chemotherapy 

 
Fig. 6. Patient 2: Drug administration using condition 
extracted from Lyapunov stability theorem. 
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Fig. 7. Patient 2: behavior of the system of equations in 
presence of new chemotherapy condition 
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Fig. 8. Patient 2: Drug administration using two 
conditions extracted from Lyapunov stability theorem 
and doctor's investigations work 
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