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Abstract: Intruders often combine exploits against multiple vulnerabilities in order to 

break into the system. Each attack scenario is a sequence of exploits launched by an 

intruder that leads to an undesirable state such as access to a database, service disruption, 

etc. The collection of possible attack scenarios in a computer network can be represented by 

a directed graph, called network attack graph (NAG). The aim of minimization analysis of 

network attack graphs is to find a minimum critical set of exploits that completely 

disconnect the initial nodes and the goal nodes of the graph. In this paper, we present an ant 

colony optimization algorithm, called AntNAG, for minimization analysis of large-scale 

network attack graphs. Each ant constructs a critical set of exploits. A local search heuristic 

has been used to improve the overall performance of the algorithm. The aim is to find a 

minimum critical set of exploits that must be prevented to guarantee no attack scenario is 

possible. We compare the performance of the AntNAG with a greedy algorithm for 

minimization analysis of several large-scale network attack graphs. The results of the 

experiments show that the AntNAG can be successfully used for minimization analysis of 

large-scale network attack graphs. 
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1 Introduction

1
 

Our society has become increasingly dependent on 

computer networks and the trend towards larger 

networks will continue. Each network host runs 

different software packages and supports several modes 

of connectivity. Despite the best efforts of software 

architects and developers, network hosts inevitably 

contain a number of vulnerabilities. Hence, it is not 

feasible for a network administrator to remove all 

vulnerabilities present in the network hosts. Therefore, 

the recent focus in security of such networks is on 

analysis of vulnerabilities globally, finding exploits that 

are more critical, and preventing them to thwart an 

intruder. 

When evaluating the security of a network, it is rarely 

enough to consider the presence or absence of isolated 

vulnerabilities [1]. This is because intruders often 

combine exploits against multiple vulnerabilities in 

order to reach their goals. For example, an intruder 

might exploit the vulnerability of a particular version of 

ftp to overwrite the .rhosts file on a victim host. In the 
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next step, the intruder could remotely log in to the 

victim. In a subsequent step, the intruder could use the 

victim host as a base to launch another exploit on a new 

victim, and so on. 

Dacier et al. [2] propose the concept of privilege graphs. 

Each node in the privilege graph represents a set of 

privileges owned by a user or a set of users. Edges 

represent vulnerabilities that can be exploited. Privilege 

graphs are then explored to construct attack state 

graphs, which represent different ways in which an 

intruder can reach a certain goal, such as root privilege 

on a host. 

Phillips and Swiler [3] propose the concept of attack 

graphs in a more general way, where each node 

represents a possible attack state. Edges represent a 

change of state caused by a single action taken by the 

intruder. 

Sheyner et al. [4] use a modified version of the model 

checker NuSMV [5] to produce attack graphs. 

Ammann et al. [6] present a scalable attack graph 

representation. These attack graphs are essentially 

similar to [3], where any path in the graph from an 

initial node to a goal node shows a sequence of exploits 

that an intruder can launch to reach his goal. 

Noel et al. [7, 8] present a number of techniques for 

managing network attack graph complexity through 

visualization. 
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The aim of minimization analysis of network attack 

graphs is to find a minimum critical set of exploits that 

must be prevented to guarantee no attack scenario is 

possible. Sheyner et al. [4] and Jha et al. [9, 10] show 

this problem is in fact NP-hard. They propose a greedy 

algorithm that can find an approximately-optimal set of 

exploits, which must be prevented to thwart an intruder. 

Ant Colony Optimization (ACO) [11, 12] is a 

metaheuristic method that is inspired by the behavior of 

real ants. The underlying idea is that by using very 

simple means of communications, a group of ants is 

able to find shortest paths between the nest and the food 

sources [13]. Along the way, ants leave a chemical 

substance called pheromone. If no pheromone trails are 

available, ants move essentially at random, but in the 

presence of pheromone, they have a tendency to follow 

the trail. In fact, ants probabilistically prefer paths that 

are marked by strong pheromone concentrations. 

Choices between different paths occur when several 

paths intersect. Then, ants choose the path to follow by 

a probabilistic decision biased by the amount of 

pheromone. Because ants in turn leave pheromone on 

the path they are following, this behavior results in a 

self-reinforcing process leading to the formation of 

paths marked by strong pheromone concentrations [14]. 

This behavior also enables ants to find shortest paths 

between the nest and the food sources. 

ACO has been successfully applied to a large number of 

combinatorial optimization problems such as the 

traveling salesman problem [15], scheduling problems 

[16], and routing problems in telecommunication 

networks [17]. 

While it is currently possible to generate very large and 

complex network attack graphs, relatively little work 

has been done to analyze them. 

In this paper, we present an ant colony optimization 

algorithm, called AntNAG, for minimization analysis of 

large-scale network attack graphs. A local search 

heuristic has been used to improve the overall 

performance of the algorithm. The aim is to find a 

minimum critical set of exploits that completely 

disconnect the initial nodes and the goal nodes of the 

graph. We also compare the performance of this 

algorithm with the greedy algorithm proposed by 

Sheyner et al. [4] and Jha et al. [9, 10] for minimization 

analysis of a sample network attack graph and several 

large-scale network attack graphs. 

The remainder of this paper is organized as follows: 

Section 2 introduces our network security model. 

Section 3 describes network attack graphs. Section 4 

presents AntNAG, an ant colony optimization algorithm 

for minimization analysis of large-scale network attack 

graphs. Section 5 reports the experimental results. 

Section 6 discusses the time complexity of the AntNAG 

with and without the local search heuristic, and finally 

Section 7 draws some conclusions. 

 

2 Network Security Model  

Our network security model is a tuple (S,  H,  ,Nc  T,  

E,  R ), where S  is a set of services, H  is a set of 

network hosts, cN is a relation expressing connectivities 

between network hosts, T  is a relation expressing trust 

relationships between network hosts, E  is a set of 

individual known exploits that intruder can use to 

construct attack scenarios, and R is a model of intruder. 

Services  

Each service Ss∈  is a pair p)(svn, , where svn  is the 

service name and p  is the port on which the service is 

listening.  

Network Hosts  

Each network host Hh∈  is a tuple ( id, svcs,  plvl,  

vuls ), where id  is the unique host identifier, svcs  is a 

set of services running on the host, plvl  is the level of 

privilege that the intruder has on the host, and vuls  is a 

set of vulnerable components available on the host.  

Network Connectivities  

Network connectivities are modeled as a relation 

PHHNc ××⊆ , where P  is a set of port numbers. 

Each network connectivity cNc∈  is a triple ( ,h s ,h t  

p ), where sh  is the source network host, th  is the 

target network host, and p  is the target port number. It 

is important to note that the connectivity relation 

incorporates the network elements such as firewalls that 

restrict the ability of one host to connect to another.  

Trust Relationships  

Trust relationships are modeled as a relation 

HHT ×⊆ , where )h,T(h st  indicates that a user can 

log in from the network host sh  to the network host th  

without authentication.  

Exploits  

Each exploit Ee∈  is a tuple ( pre, sh , th , post ), where 

pre  is a list of conditions that must hold before 

launching the exploit, sh  is the network host from 

which the exploit is launched, th  is the network host 

targeted by the exploit, and post  specifies the effects of 

exploit on the network.  

To prevent an exploit, the security analyst may change 

the firewall configuration or patch the vulnerabilities 

that made this exploit possible. An exploit Ee∈  is 

inevitable if its prevention is not feasible or incurs high 

cost. The set of inevitable exploits is denoted by I .  

Intruder  

The intruder has some information about the target 

network, such as known vulnerabilities, user passwords, 

etc.  

 

3 Minimization Analysis  

Let E  be the set of exploits. A network attack graph is a 

tuple L),V,VA,(V,G f0= , where V  is the set of nodes, 

A  is the set of directed edges, VV0 ⊆  is the set of 

initial nodes, VVf ⊆  is the set of goal nodes, and 

EA:L →  is a labeling function where eL(a) =  if and 
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only if an edge )v(v,a ′=  corresponds to an exploit e . 

A path π  in G  is a sequence of nodes m21 v...,,v,v , 

such that Vvi ∈  and A)v,(v 1ii ∈+ , where mi1 <≤ . 

The label of path π  is a subset of the set of exploits E . 

Each attack scenario corresponds to a complete path that 

starts from an initial node and ends in a goal node.  

Let { }n21 e...,,e,eE =  be the set of exploits, I  be the 

set of inevitable exploits, and { }l21 S...,,S,SS =  be the 

set of attack scenarios represented by the network attack 

graph G . The attack scenario SS j ∈  is hit by the 

exploit Eei ∈  if ji Se ∈ .  

For each exploit Eei ∈ , we define the total hit value 

)(ehv it  to be the number of attack scenarios that are hit 

by ie .  

 

{ }jijit Se|SS)(ehv ∈∈=  (1) 

 

Let EU ⊆  be a subset of exploits and hs(U)  be the set 

of attack scenarios hit by some exploits of U.  

 

{ }UesomeforSe|SShs(U) ijij ∈∈∈=  (2) 

 

An exploit ie  is redundant with respect to U if 

hs(U)}){e\hs(U i = .  

A subset of exploits I\EC ⊆  is critical if and only if 

all attack scenarios are hit by some exploits of it. 

Equivalently, C is critical if and only if every complete 

path from an initial node to a goal node of the network 

attack graph has at least one edge labeled with an 

exploit Cei ∈ . A critical set of exploits is minimal if it 

contains no redundant exploit.  

A critical set of exploits C is minimum if there is no 

critical set of exploits C′  such that CC <′ . In 

general, there can be multiple minimum critical set of 

exploits. We define the cardinality of a critical set of 

exploits C to be the number of exploits of C.  

A typical process for finding a minimum critical set of 

exploits is shown in Fig. 1. 

 

 
Fig. 1 Minimization analysis of network attack graphs. 

First, vulnerability scanning tools, such as Nessus [18], 

determine vulnerabilities of individual network hosts. 

Using this vulnerability information along with exploit 

templates, intruder’s goals, and other information about 

the network, such as connectivity between network 

hosts, a network attack graph is generated. In this 

directed graph, each complete path from an initial node 

to a goal node corresponds to an attack scenario. The 

minimization analysis of the network attack graph 

determines a minimum critical set of exploits that must 

be prevented to guarantee no attack scenario is possible. 

 

4 AntNAG  

In this section, we present AntNAG, an ant colony 

optimization algorithm for minimization analysis of 

large-scale network attack graphs. 

Each ant incrementally constructs a critical set of 

exploits. To each exploit ie  is associated a pheromone 

trail iτ  that indicates the desirability of including that 

exploit into an ant’s solution. 

Fig. 2 shows the pseudo-code of the AntNAG 

algorithm. The first step is to set parameters and 

initialize pheromone trails. Then repeated iterations of 

the algorithm are run until some termination condition is 

met (e.g., a maximum number of iterations is reached). 

Within each iteration, each ant starts with an empty set 

and constructs a critical set of exploits by incrementally 

adding exploits until all attack scenarios are hit. The 

critical sets of exploits constructed by ants may contain 

redundant exploits, which are eliminated. After that, the 

iteration-best solution is improved by a local search 

heuristic. Finally, the pheromone trails are updated 

using a global updating rule. 

 

4.1  Solution Construction 

Each ant incrementally constructs a critical set of 

exploits using the algorithm shown in Fig. 3. At each 

construction step during iteration t, each ant k chooses 

an exploit from the set of preventable exploits to add to 

the partial solution (t)Ck . The probability with which 

ant k chooses an exploit ie  is as follows [12]:  
 

 

 

 
Fig. 2 The AntNAG algorithm. 

procedure AntNAG  

Set parameters, initialize pheromone trails;  

while termination condition not met do  

for each ant k  do  

Construct a critical set of exploits (t)Ck ;  

Eliminate redundant exploits of (t)Ck ;  

end for;  

Apply local search heuristic to the iteration-best 

solution (t)Cib ;  

Apply global pheromone trail update;  

end while;  

end procedure  
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where (t)τi  is the amount of pheromone on the exploit 

ie  at iteration t and I\E(t)Nk ⊆  is the set of 

preventable exploits which ant k has not yet chosen. α  

is a positive constant used to amplify the influence of 

pheromone trails. Large values of α  give high 

importance to the pheromone trails on exploits, which 

may lead to rapid convergence to sub-optimal critical 

sets of exploits.  

 

 
Fig. 3 The algorithm for constructing a critical set of exploits. 

 

After choosing the exploit ie , it will be added to the 

partial solution (t)Ck  if it hits some attack scenarios of 

S that are not hit by any exploit of (t)Ck .  

Ants update the pheromone trails while constructing a 

solution. After adding an exploit ie  to the partial 

solution of ant k, the pheromone trail iτ  is updated 

using the local updating rule [12],  

 

0ii τξ.(t)ξ)τ(1(t)τ +−=  (4) 

 

where 1ξ0 ≤≤  is the local evaporation rate and 0τ  is 

the lower pheromone trail limit. The value of 0τ  is set 

to be the same as the initial value for the pheromone 

trails. 

The effect of the local updating rule is that each time an 

ant chooses an exploit, the pheromone trail on the 

exploit is reduced, so that the exploit becomes less 

desirable for the following ants. In other words, the 

local updating rule has the effect of lowering the 

pheromone trails on visited exploits so that they will be 

chosen with a lower probability by the other ants in their 

steps for constructing a critical set of exploits. This 

allows an increase in the exploration of exploits that 

have not been visited yet. 

The pheromone trails can never fall below 0τ , because 

the initial value for them is set to the value of 0τ  and 

the local updating rule always adds an amount of 

pheromone greater than or equal to 0τ . Having a lower 

pheromone trail limit has the advantage that all exploits 

have a nonzero probability of being included in a 

critical set of exploits. This causes the algorithm not to 

show a premature stagnation behavior (i.e., ants do not 

follow the same path and hence do not construct the 

same critical set of exploits. 

 

4.2  Minimal Solutions  

The critical set of exploits constructed by an ant may 

not be minimal. In other words, it may contain 

redundant exploits, which must be eliminated. 

 

 
Fig. 4 The algorithm for eliminating redundant exploits. 

 

Let (t)Ck  be the critical set of exploits constructed by 

an ant k. For each exploit ie , we define the exclusive hit 

value (t))C,(ehv k

ix  to be the number of attack 

scenarios that are hit by ie , but that are not hit by any 

exploit of }{e\(t)C i

k . 

If an attack scenario is already hit by several other 

exploits of (t)Ck , then extra hitting by an exploit 

(t)Ce k

i ∈  has no relevant effect. Hence, the exploit ie  

is called candidate redundant with respect to (t)Ck  if 

0(t))C,(ehv k

ix = . The set of candidate redundant 

exploits of (t)Ck  is denoted by (t)R k . 

 

{ }0(t))C,(ehv|(t)Ce(t)R k

jx

k

j

k =∈=  (5) 

 

The exclusive hit value is used to define the selection 

value (t))C,sv(e k

i  of a candidate redundant exploit 

(t)Re k

i ∈ . 

 

∑
∈

=
}{e\(t)Ce

i

k

jx

k

i

i
k

j

}){e\(t)C,(ehv(t))C,sv(e  
(6) 

 

A low value of (t))C,sv(e k

i  means that the candidate 

redundant exploit ie  hits attack scenarios that are hit by 

too many other exploits of (t)Ck , and hence it is a good 

candidate redundant exploit to be removed from (t)Ck . 

procedure EliminateRedundantExploits( (t)Ck )  

{ }0(t))C,(ehv|(t)Ce(t)R k

jx

k

j

k =∈= ;  

while ∅≠(t)R k  do  

Choose (t)Re k

i ∈  such that it has the minimum 

selection value (t))C,sv(e k

i ;  

}{e\(t)C(t)C i

kk = ;  

{ }0(t))C,(ehv|(t)Ce(t)R k

jx

k

j

k =∈= ;  

end while;  

return (t)Ck ;  

end procedure  

procedure ConstructCriticalSet( k )  

∅=(t)Ck ;  

while ant k  has not constructed a critical set do  

Probabilistically choose an exploit ie  from the 

set of preventable exploits;  

if ie  hits some attack scenarios that are not hit 

by any exploit of (t)Ck  then  

}{e(t)C(t)C i

kk
∪= ;  

Apply local pheromone trail update;  

end if;  

end while;  

return (t)Ck ;  

end procedure  
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Accordingly, the selection value is used to evaluate 

candidate redundant exploits of a critical set of exploits 

in order to choose a candidate redundant exploit to be 

removed from it. 

In Fig. 4, an algorithm is presented, which can be used 

to eliminate redundant exploits of (t)Ck . The algorithm 

is based on the idea that it is good to remove an exploit 

ie  from (t)Ck  if ie  is a candidate redundant exploit 

and hits attack scenarios that are hit by too many other 

exploits of (t)Ck . Hence, the algorithm removes at each 

step a candidate redundant exploit that has the minimum 

selection value. This is repeated until a minimal critical 

set of exploits is obtained. 

 

4.3  Local Search Heuristic  

After the minimal critical sets of exploits are 

constructed, the iteration-best solution (i.e., the minimal 

critical set of exploits constructed by the iteration-best 

ant) is improved by a local search heuristic.  

The local search heuristic is based on the following 

idea. Given the iteration-best solution (t)Cib , suppose 

there is an exploit (t)Ce ib

j ∉  such that }{e(t)C j

ib
∪  

contains at least two exploits other than je , say 

l1 ii e...,,e , with 2l ≥  that are redundant. Then 

}{e})e...,,{e\(t)(C jii

ib

l1
∪  is a better critical set of 

exploits than (t)Cib . The gain of the exploit je  with 

respect to (t)Cib  is 1l)g(e j −= . In this case, we call je  

a candidate dominant exploit.  

 

 
Fig. 5 The local search heuristic. 

 

As shown in Fig. 5, the local search heuristic starts with 

the iteration-best solution (t)Cib  and chooses a 

candidate dominant exploit having the highest gain. 

Then the chosen candidate dominant exploit is added to 

(t)Cib  and the set of redundant exploits are removed 

from the resulting critical set of exploits. This is 

repeated until no better critical set of exploits is 

obtained. 

 

4.4  Global Pheromone Trail Update 

The last step in an iteration of the AntNAG is the 

updating of pheromone trails using the following global 

updating rule: 

 

(t)Ce(t)∆τρ.(t)ρ)τ(11)(tτ ib

i

ib

iii ∈∀+−=+  (7) 

 

where 1ρ0 ≤<  is the global evaporation rate, (t)Cib  is 

the minimal critical set of exploits constructed by the 

iteration-best ant, and (t)∆τibi  is the amount of 

pheromone deposited by the iteration-best ant on the 

exploit ie  at iteration t  of the algorithm. (t)∆τibi  is 

defined as follows:  

 

|(t)C||E|(t)∆τ ibib

i −=  (8) 

 

It is important to note that in the global updating rule, 

both evaporation and new pheromone deposit are only 

applied to the exploits of (t)Cib . Also, the deposited 

pheromone is discounted by a factor ρ ; this results in 

the new pheromone trail being a weighted average 

between the old pheromone value and the amount of the 

pheromone deposited. For small values of ρ , the 

existing pheromone trails on exploits evaporate slowly, 

while the influence of the iteration-best critical set of 

exploits is dampened. On the other hand, for large 

values of ρ , the previous pheromone deposits evaporate 

rapidly, but the influence of the iteration-best critical set 

of exploits is emphasized. 

 

5 Experiments  

In order to evaluate the performance of the AntNAG, 

we performed our experiments over a sample network 

attack graph and several randomly generated large-scale 

network attack graphs. 

 

5.1  Sample Network Attack Graph 

Consider the network shown in Fig. 6. There are three 

target hosts called RedHat, Windows and Fedora on an 

internal network, and a host called PublicServer on an 

isolated demilitarized zone (DMZ) network. 

A number of services are running on each of the hosts 

of RedHat, Windows, Fedora, and PublicServer. Also, 

each of the above hosts has a number of vulnerabilities. 

Vulnerability scanning tools, such as Nessus [18], can 

be used to find the vulnerabilities of each host. 

 

 
Fig. 6 An example network. 

procedure LocalSearch( (t)Cib )  

{ }0)g(e|(t)Ce(t)D j

ib

j

ib >∉= ;  

while ∅≠(t)Dib  do  

Choose (t)De ib

i ∈  such that it has the highest 

gain )g(ei ;  

}{e(t)C(t)C i

ibib
∪= ;  

Eliminate redundant exploits of (t)Cib ;  

{ }0)g(e|(t)Ce(t)D j

ib

j

ib >∉= ;  

end while;  

return (t)Cib ;  

end procedure  
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Different types of services and vulnerabilities available 

on the network hosts are introduced in Table A.1 of 

Appendix A. 

The RedHat host on the internal network is running ftp 

and ssh services. The Fedora host is running several 

services: LICQ chat software, Squid web proxy, ftp and 

a database. The LICQ client lets Linux users exchange 

text messages over the Internet. The Squid web proxy is 

a full-featured web proxy cache. It stores requested 

Internet objects on a system closer to the requesting site 

than to the source. Web browsers can then use the local 

Squid cache as a proxy server, reducing access time as 

well as bandwidth consumption. The PublicServer host 

on the DMZ network is running IIS and Exchange 

services. The connectivity information between the 

network hosts is shown in Table 1. In this Table, each 

entry corresponds to a pair of )h,(h ts  in which sh  is 

the source network host and th  is the target network 

host. Every entry has five boolean values. These values 

are ‘T’ if the network host sh  can connect to the 

network host th  on the ports of ,http  ,licq  ,ftp  ,ssh  

and smtp , respectively. 

The intruder launches his attack starting from a single 

network host, called Intruder, which lies on the outside 

network. His goal is to disrupt the database service on 

the network host Fedora. To achieve this goal, the 

intruder should gain the root privilege on this network 

host. 

 

Table 1 Network connectivity information. 

Host Intruder Server RedHat Windows Fedora 

Intruder F,F,F,F,F T,F,F,F,T F,F,F,F,F F,F,F,F,F F,F,F,F,F 

Server F,F,F,F,F T,F,F,F,T F,F,T,T,F F,F,F,F,F T,T,T,F,F 

RedHat F,F,F,F,F T,F,F,F,T F,F,T,T,F F,F,F,F,F T,T,T,F,F 

Windows F,F,F,F,F T,F,F,F,T F,F,T,T,F F,F,F,F,F T,T,T,F,F 

Fedora F,F,F,F,F T,F,F,F,T F,F,T,T,F F,F,F,F,F T,T,T,F,F 

 

There are wdir, fshell, and sshd_bof vulnerabilities on 

the RedHat host, scripting vulnerability on the Windows 

host, wdir, fshell, squid_conf, and licq_ivv 

vulnerabilities on the Fedora host, and iis_bof and 

exchange_ivv on the PublicServer host. Also, at and 

xterm programs on the RedHat and Fedora are 

vulnerable to buffer overflow. 

The intruder can use ten generic exploits. In Table B.1 

of Appendix B, each generic exploit is represented by 

its preconditions and postconditions. The description of 

each generic exploit is given in Table B.2 of Appendix 

B. More information about each of the exploits is 

available in the CVE List [19], which is a publicly 

available list or dictionary of standardized identifiers for 

common vulnerabilities and exposures. 

Among the ten generic exploits shown in Table B.1, the 

first eight generic exploits require a pair of network 

hosts while the last two generic exploits require only 

one network host. Therefore, there are totally (8 * 5 * 4) 

+ (2 * 4) = 168 exploits, which the intruder can try. 

Each attack scenario for the above network consists of a 

subset of these 168 exploits. For example, consider the 

following attack scenario: 

 

(1) ),(_ erPublicServIntruderr2riis   

(2) ),(_ FedoraerPublicServpssquid   

(3) ),(_ FedoraerPublicServr2ulicq   

(4) ),(_ FedoraFedorau2rxterm   

 

The intruder first launches the iis_r2r exploit to gain 

root privilege on the PublicServer host. Then he uses 

the PublicServer host to launch a port scan via the 

vulnerable Squid web proxy running on the Fedora 

host. The scan discovers that it is possible to gain user 

privilege on the Fedora host with launching the 

licq_r2u exploit. After that, a simple local buffer 

overflow gives the intruder root privilege on the Fedora 

host. The attack graph for the above network consists of 

164 attack scenarios. Each attack scenario contains from 

4 to 9 exploits. 

 

5.1.1 Experimental Results 

We applied the AntNAG for minimization analysis of 

the above network attack graph. To evaluate the 

performance of the algorithm, we performed several 

experiments. 

In the first experiment, we assumed that the set of 

inevitable exploits is empty, i.e., all exploits are 

preventable. Therefore, the aim was to find a minimum 

critical set of exploits among 168 exploits. Using the 

AntNAG, the following minimum critical set of exploits 

was found: 

 

{  ),,(  erPublicServIntruderiis_r2rC =   

} ),( erPublicServIntruder2uexchange_r   

 

In the second experiment, we assumed that the generic 

exploits iis_r2r, exchange_r2u, and xterm_u2r are 

inevitable, i.e., the prevention of them is not feasible or 

incurs high cost. Therefore, the aim was to find a 

minimum critical set of exploits among 124 exploits. 

Using the AntNAG, the following minimum critical set 

of exploits was found: 

 

{ ),,(  FedoraerPublicServlicq_r2uC =   

 ),,( FedoraRedHatlicq_r2u   

),,( WindowserPublicServscript_r2u   

), ,( FedoraerPublicServftp_rhosts   

}) ,( FedoraRedHatftp_rhosts   

 

While using the greedy algorithm proposed by Sheyner 

et al. [4] and Jha et al. [9, 10], the following minimum 

critical set of exploits was found: 

 

{ ),,( WindowserPublicServscript_r2uC =   

), ,( FedoraFedoraat_u2r   
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), ,( RedHaterPublicServsshd_r2u   

), ,( RedHaterPublicServftp_rhosts   

), ,( FedoraerPublicServsquid_ps   

}) ,( FedoraerPublicServftp_rhosts   

 

The second experiment shows the AntNAG can find a 

critical set of exploits with less cardinality. 

In the experiments, the AntNAG parameters were set to 

1τ0 = , 1α = , 0.1ξ = , and 0.1ρ = . The number of 

ants was set to 10m =  and the maximum number of 

iterations was set to 50tm = . 

 

5.2  Large-Scale Network Attack Graphs 

A large computer network builds upon multiple 

platforms, runs different software packages and 

supports several modes of connectivity. Despite the best 

efforts of software architects and developers, each 

network host inevitably contains a number of 

vulnerabilities. Several factors can make network attack 

graphs larger so that finding a minimum critical set of 

exploits becomes more difficult. An obvious factor is 

the size of the network under analysis. Our society has 

become increasingly dependent on computer networks 

and the trend towards larger networks will continue. For 

example, there are enterprises today consisting of tens 

of thousands of network hosts. Also, less secure 

networks clearly have larger network attack graphs. 

Each network host might have several exploitable 

vulnerabilities. When considered across a large 

enterprise, network attack graphs become potentially 

large [20]. 

 

Table 2 Large-scale network attack graphs. 

Network 

Attack 

Graph 

Cardinality of 

the Set of 

Exploits ( n ) 

Cardinality of 

the Set of Attack 

Scenarios ( l ) 

Average 

Cardinality of 

Attack Scenarios 

1NAG  100 1000 5.93 

2NAG  200 2000 6.01 

3NAG  400 4000 5.99 

4NAG  400 6000 5.99 

5NAG  800 8000 6.01 

6NAG  800 10000 6.04 

7NAG  100 1000 7.56 

8NAG  200 2000 7.55 

9NAG  400 4000 7.52 

10NAG  400 6000 7.48 

11NAG  800 8000 7.48 

12NAG  800 10000 7.50 

 

In order to further evaluate the performance of the 

AntNAG, we randomly generated 12 large-scale 

network attack graphs, denoted by ,1NAG  ,2NAG  ..., 

12NAG . For each network attack graph, we considered 

different values for the cardinalities of E  and S , where 

E  is the set of known exploits and S  is the set of 

attack scenarios represented by the network attack 

graph. In ,1NAG  ..., 6NAG , attack scenarios contain 

from 3 to 9 exploits while in ,7NAG  ..., 12NAG , attack 

scenarios contain from 3 to 12 exploits. 

Table 2 shows the cardinality of the set of known 

exploits, the cardinality of the set of attack scenarios, 

and the average cardinality of attack scenarios for each 

generated network attack graph. 

 

5.2.1 Experimental Results 

We applied the AntNAG for minimization analysis of 

the above large-scale network attack graphs. We 

performed 10 runs of the algorithm with different 

random seeds and reported the best cardinality and the 

average cardinality of critical sets of exploits obtained 

from these 10 runs. We also applied the greedy 

algorithm proposed by Sheyner et al. [4] and Jha et al. 

[9, 10] for minimization analysis of the above network 

attack graphs. 

As shown in Table 3, the AntNAG outperforms the 

greedy algorithm and finds critical sets of exploits with 

less cardinality. Also, the AntNAG performs 

significantly better than the AntNAG without the local 

search heuristic. On average, the cardinality of critical 

sets of exploits found by the AntNAG and the AntNAG 

without the local search heuristic are, respectively, 

9.98% and 7.20% less than the cardinality of critical 

sets of exploits found by the greedy algorithm. 

 

Table 3 Cardinality of critical set of exploits found by the 

AntNAG and the greedy algorithm. 

AntNAG 
AntNAG 

without LS 
Network  

Attack 

Graph Best Average Best Average 

Greedy 

Algorithm 

[4, 9, 10] 

1NAG  44 44.5 44 44.9 50 

2NAG  87 88.5 91 92.7 98 

3NAG  177 178.9 182 182.9 197 

4NAG  198 199.3 202 203.7 221 

5NAG  358 361.1 373 376.1 397 

6NAG  373 380.1 396 397.8 417 

7NAG  39 39.3 39 39.5 45 

8NAG  81 81.8 84 85.3 91 

9NAG  159 161.7 164 165.4 182 

10NAG  180 181.8 184 185.6 200 

11NAG  326 329.1 341 343 362 

12NAG  346 348.8 361 365.4 388 

 

In the experiments, the AntNAG parameters were set to 

1τ0 = , 1α = , and 0.1ξ = . The number of ants was set 

to 15m =  and the maximum number of iterations was 

set to 100tm = . For minimization analysis of 1NAG  
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and 7NAG , ρ  was set to 0.1, for minimization analysis 

of 2NAG , 3NAG , 4NAG , 8NAG , 9NAG  and 10NAG , 

ρ  was set to 0.05, and for minimization analysis of the 

other network attack graphs, ρ  was set to 0.025. 

Figures 7 to 10 show the progress of the average 

cardinality of the global-best solution (i.e., the best 

critical set of exploits found from the first iteration of 

the algorithm), obtained from 10 runs of the AntNAG 

and 10 runs of the AntNAG without the local search 

heuristic for minimization analysis of 4NAG , 6NAG , 

9NAG , and 11NAG , respectively. The cardinality of the 

global-best solution is expected to be as small as 

possible. As the figures show, the local search heuristic 

is essential for the construction of high-quality critical 

sets of exploits. This is because after improving the 

iteration-best solution by the local search heuristic, 

pheromone trails are updated on the exploits of the 

locally optimized solution. 
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Fig. 7 Progress of the average cardinality of the global-best solution of the AntNAG and the AntNAG without the local search 

heuristic on NAG4. 
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Fig. 8 Progress of the average cardinality of the global-best solution of the AntNAG and the AntNAG without the local search 

heuristic on NAG6. 

 



Iranian Journal of Electrical & Electronic Engineering, Vol. 2, Nos. 3 & 4, July 2006 114 

161

163

165

167

169

171

173

175

177

179

181

183

185

187

189

191

0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r
  
o
f 
 E

x
p
lo

it
s 

Iteration    

AntNAG

AntNAG without LS

 
Fig. 9 Progress of the average cardinality of the global-best solution of the AntNAG and the AntNAG without the local search 

heuristic on NAG9. 
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Fig. 10 Progress of the average cardinality of the global-best solution of the AntNAG and the AntNAG without the local search 

heuristic on NAG11. 

 

Figures 11 to 14 show the effect of the different values 

of the global evaporation rate, ρ , on the performance of 

the AntNAG. The results were obtained from 10 runs of 

the AntNAG for minimization analysis of 3NAG , 

6NAG , 10NAG , and 11NAG . The figures suggest that by 

decreasing the value of the global evaporation rate ρ , 

the average cardinality of the global-best solution will 

decrease. For small values of ρ , the existing pheromone 

trails on exploits evaporate slowly, while the influence 

of the iteration-best solution is dampened. 
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Fig. 11 Effect of the global evaporation rate on the performance of the AntNAG on NAG3. 
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Fig. 12 Effect of the global evaporation rate on the performance of the AntNAG on NAG6. 
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Fig. 13 Effect of the global evaporation rate on the performance of the AntNAG on NAG10. 
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Fig. 14 Effect of the global evaporation rate on the performance of the AntNAG on NAG11. 

 

 

It should be noted that the best value of ρ  is different 

for network attack graphs with different scales. This is 

because, as defined in Eq. (8), the amount of pheromone 

deposited by the iteration-best ant is obtained as a 

function of the cardinality of the set of exploits. The 

larger the cardinality of the set of exploits, the lower the 

value of ρ  is chosen. 

Figures 15 and 16 show the effect of the number of ants, 

m , on the performance of the AntNAG, obtained from 

10 runs of the AntNAG for minimization analysis of 

4NAG  and 12NAG . As the figures show, when using a 

very small number of ants, the algorithm shows a 

premature stagnation behavior. This is because the 

fewer the number of ants, the less the exploration ability 

of the algorithm, and consequently the less information 

about the search space is available to all ants. 
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Fig. 15 Effect of the number of ants on the performance of the AntNAG on NAG4. 
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Fig. 16 Effect of the number of ants on the performance of the AntNAG on NAG12. 

 

 

6 Time Complexity 

Let m  be the number of ants and mt  be the maximum 

number of iterations. At each iteration t  of the 

AntNAG, each ant k  starts with an empty set and 

constructs a critical set of exploits (t)Ck  by 

incrementally adding exploits until all attack scenarios 

are hit. The construction of (t)Ck  takes l)O(n ⋅  time, 

where n  is the cardinality of the set of preventable 

exploits and l  is the cardinality of the set of attack 

scenarios. The redundant exploits of (t)Ck  are then 

eliminated using the algorithm in Fig. 4, which runs in 

l)O(n2 ⋅  time. After that, the iteration-best solution 

(t)Cib  is improved by the local search heuristic in 

Fig. 5, which runs in l)O(n3 ⋅  time. Finally, the 

pheromone trails are updated using the global updating 

rule, which takes O(n)  time. The overall time 

complexity of the AntNAG is therefore l)nO(t 3

m ⋅⋅ . 

Strictly speaking, it is m))(nlnO(t 2

m +⋅⋅⋅ , but we 

usually set m  to a small value. Hence, the time 

complexity can be simplified to l)nO(t 3

m ⋅⋅ . Similarly, 

the overall time complexity of the AntNAG without the 

local search heuristic is l)nmO(t 2

m ⋅⋅⋅ . It should be 
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noted that the time complexity of the greedy algorithm 

proposed by Sheyner et al. [4] and Jha et al. [9, 10] is 

l)O(n2 ⋅ . 

 

7 Conclusions 

Each network attack graph represents the collection of 

possible attack scenarios in a computer network. Each 

attack scenario is a sequence of exploits that leads to an 

undesirable state. An example of an undesirable state is 

one that the intruder gains root privilege on a critical 

network host. The aim of minimization analysis of a 

network attack graph is to find a minimum critical set of 

exploits, which must be prevented to thwart an intruder. 

This problem is in fact NP-hard. 

In this paper, we presented an ant colony optimization 

algorithm, called AntNAG, for minimization analysis of 

network attack graphs. We reported the results of 

applying this algorithm for minimization analysis of a 

sample network attack graph and 12 large-scale network 

attack graphs. We also applied the greedy algorithm 

proposed by Sheyner et al. [4] and Jha et al. [9, 10] for 

minimization analysis of the above network attack 

graphs. On average, the cardinality of critical sets of 

exploits found by the AntNAG and the AntNAG 

without the local search heuristic were, respectively, 

9.98% and 7.20% less than the cardinality of critical 

sets of exploits found by the greedy algorithm. The 

results of experiments show that the AntNAG performs 

significantly better than the AntNAG without the local 

search heuristic and finds a critical set of exploits with 

less cardinality. This shows the significance of the local 

search heuristic in the AntNAG. 
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Appendix A. Description of Vulnerabilities  

 

Table A.1 Types of services and vulnerabilities running on the 

network hosts. 

)(hiis_bof  
IIS web server has buffer overflow 

vulnerability on host h   

)(hvvexchange_i  
Exchange mail server has input validation 

vulnerability on host h   

)(hsquid_conf  
Squid web proxy is misconfigured on 

host h   

)(hlicq_ivv  
LICQ client has input validation 

vulnerability on host h   

)(hsshd_bof  
sshd server has buffer overflow 

vulnerability on host h   

)(hscripting  HTML scripting is enabled on host h   

)(hftp  ftp service is running on host h   

)(hwdir  ftp home directory is writable on host h   

)(hfshell  ftp user has executable shell on host h   

)(hssh  ssh service is running on host h   

)(hxterm_bof  
xterm program has buffer overflow 

vulnerability on host h   

)(hat_bof  
at program has buffer overflow 

vulnerability on host h   

)(hdatabase  database service is running on host h   

 

 

 

Appendix B. Description of Exploits  

 

Table B.1 Exploit templates. 

Exploit Preconditions Postconditions 

),( ts hhiis_r2r  

)( thiis_bof  

),,( httphhC ts  

user)( ≥shplvl  

root)( <thplvl  

)( thiis¬  

root:)( =thplvl  

),( ts hh2uexchange_r  

)( thvvexchange_i  

),,( smtphhC ts  

user)( ≥shplvl  

none)( =thplvl  

user:)( =thplvl  

),( ts hhsquid_ps  

)( thsquid_conf  

scan¬  

),,( httphhC ts  

user)( ≥shplvl  

scan  

),( ts hhlicq_r2u  

)( thlicq_ivv  

scan  

),,( licqhhC ts  

user)( ≥shplvl  

none)( =thplvl  

user:)( =thplvl  

),( ts hhscript_r2u  

)( thscripting  

),,( httphhC st  

user)( ≥shplvl  

none)( =thplvl  

user:)( =thplvl  

),( ts hhsshd_r2r  

)( thsshd_bof  

),,( sshhhC ts  

user)( ≥shplvl  

root)( <thplvl  

)( thssh¬  

root:)( =thplvl  

),( ts hhftp_rhosts  

)( thftp  

)( thwdir  

)( thfshell  

),( st hhT¬  

),,( ftphhC ts  

user)( ≥shplvl  

),( st hhT  

),( ts hhrsh_r2u  

),( st hhT  

user)( ≥shplvl  

none)( =thplvl  

user:)( =thplvl  

),( tt hhxterm_u2r  
)( thxterm_bof  

user)( =thplvl  
root:)( =thplvl  

),( tt hhat_u2r  
)( that_bof  

user)( =thplvl  
root:)( =thplvl  

 

 

Table B.2 Description of generic exploits. 

Exploit Description 

iis_r2r  
Buffer overflow vulnerability in the IIS 

web server allows remote intruders to gain 

root shell on the target network host  

2uexchange_r  

The OLE component in the Microsoft 

Exchange mail server does not properly 

validate the lengths of messages for 

certain OLE data, which allows remote 

intruders to execute arbitrary code  

squid_ps  
The intruder can use a misconfigured 

Squid web proxy to conduct unauthorized 

activities such as port scanning  
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licq_r2u  

The intruder can send a specially crafted 

URL to the LICQ client to execute 

arbitrary commands on the target network 

host  

script_r2u  

Microsoft Internet Explorer allows remote 

intruders to execute arbitrary code via 

malformed Content-Type and Content-

Disposition header fields that cause the 

application for the spoofed file type to 

pass the file back to the operating system 

for handling rather than raise an error 

message  

sshd_r2r  
Buffer overflow vulnerability in the sshd 

server allows remote intruders to gain root 

shell on the target network host  

ftp_rhosts  

Using ftp vulnerability, the intruder 

creates a .rhosts file in the ftp home 

directory, creating a remote login trust 

relationship between his network host and 

the target network host  

rsh_r2u  

Using an existing remote login trust 

relationship between two hosts, the 

intruder logs in from one machine to 

another, getting a user shell without 

supplying a password  

xterm_u2r  
Buffer overflow vulnerability in the xterm 

program allows local users to gain root 

shell on the target network host  

at_u2r  
Buffer overflow vulnerability in the at 

program allows local users to gain root 

shell on the target network host  
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