
Iranian Journal of Electrical & Electronic Engineering, Vol. 2, Nos. 3 & 4, July 2006 106

An Ant Colony Optimization Algorithm for Network

Vulnerability Analysis

M. Abadi* and S. Jalili**

Abstract: Intruders often combine exploits against multiple vulnerabilities in order to

break into the system. Each attack scenario is a sequence of exploits launched by an

intruder that leads to an undesirable state such as access to a database, service disruption,

etc. The collection of possible attack scenarios in a computer network can be represented by

a directed graph, called network attack graph (NAG). The aim of minimization analysis of

network attack graphs is to find a minimum critical set of exploits that completely

disconnect the initial nodes and the goal nodes of the graph. In this paper, we present an ant

colony optimization algorithm, called AntNAG, for minimization analysis of large-scale

network attack graphs. Each ant constructs a critical set of exploits. A local search heuristic

has been used to improve the overall performance of the algorithm. The aim is to find a

minimum critical set of exploits that must be prevented to guarantee no attack scenario is

possible. We compare the performance of the AntNAG with a greedy algorithm for

minimization analysis of several large-scale network attack graphs. The results of the

experiments show that the AntNAG can be successfully used for minimization analysis of

large-scale network attack graphs.

Keywords: Ant Colony Optimization, Metaheuristic, Network Attack Graph, Network

Vulnerability Analysis.

1 Introduction

1

Our society has become increasingly dependent on

computer networks and the trend towards larger

networks will continue. Each network host runs

different software packages and supports several modes

of connectivity. Despite the best efforts of software

architects and developers, network hosts inevitably

contain a number of vulnerabilities. Hence, it is not

feasible for a network administrator to remove all

vulnerabilities present in the network hosts. Therefore,

the recent focus in security of such networks is on

analysis of vulnerabilities globally, finding exploits that

are more critical, and preventing them to thwart an

intruder.

When evaluating the security of a network, it is rarely

enough to consider the presence or absence of isolated

vulnerabilities [1]. This is because intruders often

combine exploits against multiple vulnerabilities in

order to reach their goals. For example, an intruder

might exploit the vulnerability of a particular version of

ftp to overwrite the .rhosts file on a victim host. In the

Iranian Journal of Electrical & Electronic Engineering, 2006.

* M. Abadi is a PhD student at the Department of Computer

Engineering, Tarbiat Modares University, Tehran 14115-143, Iran.

** S. Jalili is with the Department of Computer Engineering, Tarbiat

Modares University, Tehran 14115-143, Iran.
E-mail: abadi@modares.ac.ir, sjalili@modares.ac.ir.

next step, the intruder could remotely log in to the

victim. In a subsequent step, the intruder could use the

victim host as a base to launch another exploit on a new

victim, and so on.

Dacier et al. [2] propose the concept of privilege graphs.

Each node in the privilege graph represents a set of

privileges owned by a user or a set of users. Edges

represent vulnerabilities that can be exploited. Privilege

graphs are then explored to construct attack state

graphs, which represent different ways in which an

intruder can reach a certain goal, such as root privilege

on a host.

Phillips and Swiler [3] propose the concept of attack

graphs in a more general way, where each node

represents a possible attack state. Edges represent a

change of state caused by a single action taken by the

intruder.

Sheyner et al. [4] use a modified version of the model

checker NuSMV [5] to produce attack graphs.

Ammann et al. [6] present a scalable attack graph

representation. These attack graphs are essentially

similar to [3], where any path in the graph from an

initial node to a goal node shows a sequence of exploits

that an intruder can launch to reach his goal.

Noel et al. [7, 8] present a number of techniques for

managing network attack graph complexity through

visualization.

Iranian Journal of Electrical & Electronic Engineering, Vol. 2, Nos. 3 & 4, July 2006 107

The aim of minimization analysis of network attack

graphs is to find a minimum critical set of exploits that

must be prevented to guarantee no attack scenario is

possible. Sheyner et al. [4] and Jha et al. [9, 10] show

this problem is in fact NP-hard. They propose a greedy

algorithm that can find an approximately-optimal set of

exploits, which must be prevented to thwart an intruder.

Ant Colony Optimization (ACO) [11, 12] is a

metaheuristic method that is inspired by the behavior of

real ants. The underlying idea is that by using very

simple means of communications, a group of ants is

able to find shortest paths between the nest and the food

sources [13]. Along the way, ants leave a chemical

substance called pheromone. If no pheromone trails are

available, ants move essentially at random, but in the

presence of pheromone, they have a tendency to follow

the trail. In fact, ants probabilistically prefer paths that

are marked by strong pheromone concentrations.

Choices between different paths occur when several

paths intersect. Then, ants choose the path to follow by

a probabilistic decision biased by the amount of

pheromone. Because ants in turn leave pheromone on

the path they are following, this behavior results in a

self-reinforcing process leading to the formation of

paths marked by strong pheromone concentrations [14].

This behavior also enables ants to find shortest paths

between the nest and the food sources.

ACO has been successfully applied to a large number of

combinatorial optimization problems such as the

traveling salesman problem [15], scheduling problems

[16], and routing problems in telecommunication

networks [17].

While it is currently possible to generate very large and

complex network attack graphs, relatively little work

has been done to analyze them.

In this paper, we present an ant colony optimization

algorithm, called AntNAG, for minimization analysis of

large-scale network attack graphs. A local search

heuristic has been used to improve the overall

performance of the algorithm. The aim is to find a

minimum critical set of exploits that completely

disconnect the initial nodes and the goal nodes of the

graph. We also compare the performance of this

algorithm with the greedy algorithm proposed by

Sheyner et al. [4] and Jha et al. [9, 10] for minimization

analysis of a sample network attack graph and several

large-scale network attack graphs.

The remainder of this paper is organized as follows:

Section 2 introduces our network security model.

Section 3 describes network attack graphs. Section 4

presents AntNAG, an ant colony optimization algorithm

for minimization analysis of large-scale network attack

graphs. Section 5 reports the experimental results.

Section 6 discusses the time complexity of the AntNAG

with and without the local search heuristic, and finally

Section 7 draws some conclusions.

2 Network Security Model

Our network security model is a tuple (S, H, ,Nc T,

E, R), where S is a set of services, H is a set of

network hosts, cN is a relation expressing connectivities

between network hosts, T is a relation expressing trust

relationships between network hosts, E is a set of

individual known exploits that intruder can use to

construct attack scenarios, and R is a model of intruder.

Services

Each service Ss∈ is a pair p)(svn, , where svn is the

service name and p is the port on which the service is

listening.

Network Hosts

Each network host Hh∈ is a tuple (id, svcs, plvl,

vuls), where id is the unique host identifier, svcs is a

set of services running on the host, plvl is the level of

privilege that the intruder has on the host, and vuls is a

set of vulnerable components available on the host.

Network Connectivities

Network connectivities are modeled as a relation

PHHNc ××⊆ , where P is a set of port numbers.

Each network connectivity cNc∈ is a triple (,h s ,h t

p), where sh is the source network host, th is the

target network host, and p is the target port number. It

is important to note that the connectivity relation

incorporates the network elements such as firewalls that

restrict the ability of one host to connect to another.

Trust Relationships

Trust relationships are modeled as a relation

HHT ×⊆ , where)h,T(h st indicates that a user can

log in from the network host sh to the network host th

without authentication.

Exploits

Each exploit Ee∈ is a tuple (pre, sh , th , post), where

pre is a list of conditions that must hold before

launching the exploit, sh is the network host from

which the exploit is launched, th is the network host

targeted by the exploit, and post specifies the effects of

exploit on the network.

To prevent an exploit, the security analyst may change

the firewall configuration or patch the vulnerabilities

that made this exploit possible. An exploit Ee∈ is

inevitable if its prevention is not feasible or incurs high

cost. The set of inevitable exploits is denoted by I .

Intruder

The intruder has some information about the target

network, such as known vulnerabilities, user passwords,

etc.

3 Minimization Analysis

Let E be the set of exploits. A network attack graph is a

tuple L),V,VA,(V,G f0= , where V is the set of nodes,

A is the set of directed edges, VV0 ⊆ is the set of

initial nodes, VVf ⊆ is the set of goal nodes, and

EA:L → is a labeling function where eL(a) = if and

Iranian Journal of Electrical & Electronic Engineering, Vol. 2, Nos. 3 & 4, July 2006 108

only if an edge)v(v,a ′= corresponds to an exploit e .

A path π in G is a sequence of nodes m21 v...,,v,v ,

such that Vvi ∈ and A)v,(v 1ii ∈+ , where mi1 <≤ .

The label of path π is a subset of the set of exploits E .

Each attack scenario corresponds to a complete path that

starts from an initial node and ends in a goal node.

Let { }n21 e...,,e,eE = be the set of exploits, I be the

set of inevitable exploits, and { }l21 S...,,S,SS = be the

set of attack scenarios represented by the network attack

graph G . The attack scenario SS j ∈ is hit by the

exploit Eei ∈ if ji Se ∈ .

For each exploit Eei ∈ , we define the total hit value

)(ehv it to be the number of attack scenarios that are hit

by ie .

{ }jijit Se|SS)(ehv ∈∈= (1)

Let EU ⊆ be a subset of exploits and hs(U) be the set

of attack scenarios hit by some exploits of U.

{ }UesomeforSe|SShs(U) ijij ∈∈∈= (2)

An exploit ie is redundant with respect to U if

hs(U)}){e\hs(U i = .

A subset of exploits I\EC ⊆ is critical if and only if

all attack scenarios are hit by some exploits of it.

Equivalently, C is critical if and only if every complete

path from an initial node to a goal node of the network

attack graph has at least one edge labeled with an

exploit Cei ∈ . A critical set of exploits is minimal if it

contains no redundant exploit.

A critical set of exploits C is minimum if there is no

critical set of exploits C′ such that CC <′ . In

general, there can be multiple minimum critical set of

exploits. We define the cardinality of a critical set of

exploits C to be the number of exploits of C.

A typical process for finding a minimum critical set of

exploits is shown in Fig. 1.

Fig. 1 Minimization analysis of network attack graphs.

First, vulnerability scanning tools, such as Nessus [18],

determine vulnerabilities of individual network hosts.

Using this vulnerability information along with exploit

templates, intruder’s goals, and other information about

the network, such as connectivity between network

hosts, a network attack graph is generated. In this

directed graph, each complete path from an initial node

to a goal node corresponds to an attack scenario. The

minimization analysis of the network attack graph

determines a minimum critical set of exploits that must

be prevented to guarantee no attack scenario is possible.

4 AntNAG

In this section, we present AntNAG, an ant colony

optimization algorithm for minimization analysis of

large-scale network attack graphs.

Each ant incrementally constructs a critical set of

exploits. To each exploit ie is associated a pheromone

trail iτ that indicates the desirability of including that

exploit into an ant’s solution.

Fig. 2 shows the pseudo-code of the AntNAG

algorithm. The first step is to set parameters and

initialize pheromone trails. Then repeated iterations of

the algorithm are run until some termination condition is

met (e.g., a maximum number of iterations is reached).

Within each iteration, each ant starts with an empty set

and constructs a critical set of exploits by incrementally

adding exploits until all attack scenarios are hit. The

critical sets of exploits constructed by ants may contain

redundant exploits, which are eliminated. After that, the

iteration-best solution is improved by a local search

heuristic. Finally, the pheromone trails are updated

using a global updating rule.

4.1 Solution Construction

Each ant incrementally constructs a critical set of

exploits using the algorithm shown in Fig. 3. At each

construction step during iteration t, each ant k chooses

an exploit from the set of preventable exploits to add to

the partial solution (t)Ck . The probability with which

ant k chooses an exploit ie is as follows [12]:

Fig. 2 The AntNAG algorithm.

procedure AntNAG

Set parameters, initialize pheromone trails;

while termination condition not met do

for each ant k do

Construct a critical set of exploits (t)Ck ;

Eliminate redundant exploits of (t)Ck ;

end for;

Apply local search heuristic to the iteration-best

solution (t)Cib ;

Apply global pheromone trail update;

end while;

end procedure

Exploit

Templates

Minimization

Analysis

Vulnerability

Analysis

Intruder’s Goals

Network

Attack Graph

Vulnerability

Scanning Tools

Configuration

Management Tools

Vulnerability

Information

Configuration

Information

Iranian Journal of Electrical & Electronic Engineering, Vol. 2, Nos. 3 & 4, July 2006 109









∉

∈
= ∑ ∈

(t)Neif0

(t)Neif
(t)][τ

(t)][τ

(t)p

k

i

k

i

(t)Ne

α

j

α

i

k

i k
j

 (3)

where (t)τi is the amount of pheromone on the exploit

ie at iteration t and I\E(t)Nk ⊆ is the set of

preventable exploits which ant k has not yet chosen. α

is a positive constant used to amplify the influence of

pheromone trails. Large values of α give high

importance to the pheromone trails on exploits, which

may lead to rapid convergence to sub-optimal critical

sets of exploits.

Fig. 3 The algorithm for constructing a critical set of exploits.

After choosing the exploit ie , it will be added to the

partial solution (t)Ck if it hits some attack scenarios of

S that are not hit by any exploit of (t)Ck .

Ants update the pheromone trails while constructing a

solution. After adding an exploit ie to the partial

solution of ant k, the pheromone trail iτ is updated

using the local updating rule [12],

0ii τξ.(t)ξ)τ(1(t)τ +−= (4)

where 1ξ0 ≤≤ is the local evaporation rate and 0τ is

the lower pheromone trail limit. The value of 0τ is set

to be the same as the initial value for the pheromone

trails.

The effect of the local updating rule is that each time an

ant chooses an exploit, the pheromone trail on the

exploit is reduced, so that the exploit becomes less

desirable for the following ants. In other words, the

local updating rule has the effect of lowering the

pheromone trails on visited exploits so that they will be

chosen with a lower probability by the other ants in their

steps for constructing a critical set of exploits. This

allows an increase in the exploration of exploits that

have not been visited yet.

The pheromone trails can never fall below 0τ , because

the initial value for them is set to the value of 0τ and

the local updating rule always adds an amount of

pheromone greater than or equal to 0τ . Having a lower

pheromone trail limit has the advantage that all exploits

have a nonzero probability of being included in a

critical set of exploits. This causes the algorithm not to

show a premature stagnation behavior (i.e., ants do not

follow the same path and hence do not construct the

same critical set of exploits.

4.2 Minimal Solutions

The critical set of exploits constructed by an ant may

not be minimal. In other words, it may contain

redundant exploits, which must be eliminated.

Fig. 4 The algorithm for eliminating redundant exploits.

Let (t)Ck be the critical set of exploits constructed by

an ant k. For each exploit ie , we define the exclusive hit

value (t))C,(ehv k

ix to be the number of attack

scenarios that are hit by ie , but that are not hit by any

exploit of }{e\(t)C i

k .

If an attack scenario is already hit by several other

exploits of (t)Ck , then extra hitting by an exploit

(t)Ce k

i ∈ has no relevant effect. Hence, the exploit ie

is called candidate redundant with respect to (t)Ck if

0(t))C,(ehv k

ix = . The set of candidate redundant

exploits of (t)Ck is denoted by (t)R k .

{ }0(t))C,(ehv|(t)Ce(t)R k

jx

k

j

k =∈= (5)

The exclusive hit value is used to define the selection

value (t))C,sv(e k

i of a candidate redundant exploit

(t)Re k

i ∈ .

∑
∈

=
}{e\(t)Ce

i

k

jx

k

i

i
k

j

}){e\(t)C,(ehv(t))C,sv(e
(6)

A low value of (t))C,sv(e k

i means that the candidate

redundant exploit ie hits attack scenarios that are hit by

too many other exploits of (t)Ck , and hence it is a good

candidate redundant exploit to be removed from (t)Ck .

procedure EliminateRedundantExploits((t)Ck)

{ }0(t))C,(ehv|(t)Ce(t)R k

jx

k

j

k =∈= ;

while ∅≠(t)R k do

Choose (t)Re k

i ∈ such that it has the minimum

selection value (t))C,sv(e k

i ;

}{e\(t)C(t)C i

kk = ;

{ }0(t))C,(ehv|(t)Ce(t)R k

jx

k

j

k =∈= ;

end while;

return (t)Ck ;

end procedure

procedure ConstructCriticalSet(k)

∅=(t)Ck ;

while ant k has not constructed a critical set do

Probabilistically choose an exploit ie from the

set of preventable exploits;

if ie hits some attack scenarios that are not hit

by any exploit of (t)Ck then

}{e(t)C(t)C i

kk
∪= ;

Apply local pheromone trail update;

end if;

end while;

return (t)Ck ;

end procedure

Iranian Journal of Electrical & Electronic Engineering, Vol. 2, Nos. 3 & 4, July 2006 110

Accordingly, the selection value is used to evaluate

candidate redundant exploits of a critical set of exploits

in order to choose a candidate redundant exploit to be

removed from it.

In Fig. 4, an algorithm is presented, which can be used

to eliminate redundant exploits of (t)Ck . The algorithm

is based on the idea that it is good to remove an exploit

ie from (t)Ck if ie is a candidate redundant exploit

and hits attack scenarios that are hit by too many other

exploits of (t)Ck . Hence, the algorithm removes at each

step a candidate redundant exploit that has the minimum

selection value. This is repeated until a minimal critical

set of exploits is obtained.

4.3 Local Search Heuristic

After the minimal critical sets of exploits are

constructed, the iteration-best solution (i.e., the minimal

critical set of exploits constructed by the iteration-best

ant) is improved by a local search heuristic.

The local search heuristic is based on the following

idea. Given the iteration-best solution (t)Cib , suppose

there is an exploit (t)Ce ib

j ∉ such that }{e(t)C j

ib
∪

contains at least two exploits other than je , say

l1 ii e...,,e , with 2l ≥ that are redundant. Then

}{e})e...,,{e\(t)(C jii

ib

l1
∪ is a better critical set of

exploits than (t)Cib . The gain of the exploit je with

respect to (t)Cib is 1l)g(e j −= . In this case, we call je

a candidate dominant exploit.

Fig. 5 The local search heuristic.

As shown in Fig. 5, the local search heuristic starts with

the iteration-best solution (t)Cib and chooses a

candidate dominant exploit having the highest gain.

Then the chosen candidate dominant exploit is added to

(t)Cib and the set of redundant exploits are removed

from the resulting critical set of exploits. This is

repeated until no better critical set of exploits is

obtained.

4.4 Global Pheromone Trail Update

The last step in an iteration of the AntNAG is the

updating of pheromone trails using the following global

updating rule:

(t)Ce(t)∆τρ.(t)ρ)τ(11)(tτ ib

i

ib

iii ∈∀+−=+ (7)

where 1ρ0 ≤< is the global evaporation rate, (t)Cib is

the minimal critical set of exploits constructed by the

iteration-best ant, and (t)∆τibi is the amount of

pheromone deposited by the iteration-best ant on the

exploit ie at iteration t of the algorithm. (t)∆τibi is

defined as follows:

|(t)C||E|(t)∆τ ibib

i −= (8)

It is important to note that in the global updating rule,

both evaporation and new pheromone deposit are only

applied to the exploits of (t)Cib . Also, the deposited

pheromone is discounted by a factor ρ ; this results in

the new pheromone trail being a weighted average

between the old pheromone value and the amount of the

pheromone deposited. For small values of ρ , the

existing pheromone trails on exploits evaporate slowly,

while the influence of the iteration-best critical set of

exploits is dampened. On the other hand, for large

values of ρ , the previous pheromone deposits evaporate

rapidly, but the influence of the iteration-best critical set

of exploits is emphasized.

5 Experiments

In order to evaluate the performance of the AntNAG,

we performed our experiments over a sample network

attack graph and several randomly generated large-scale

network attack graphs.

5.1 Sample Network Attack Graph

Consider the network shown in Fig. 6. There are three

target hosts called RedHat, Windows and Fedora on an

internal network, and a host called PublicServer on an

isolated demilitarized zone (DMZ) network.

A number of services are running on each of the hosts

of RedHat, Windows, Fedora, and PublicServer. Also,

each of the above hosts has a number of vulnerabilities.

Vulnerability scanning tools, such as Nessus [18], can

be used to find the vulnerabilities of each host.

Fig. 6 An example network.

procedure LocalSearch((t)Cib)

{ }0)g(e|(t)Ce(t)D j

ib

j

ib >∉= ;

while ∅≠(t)Dib do

Choose (t)De ib

i ∈ such that it has the highest

gain)g(ei ;

}{e(t)C(t)C i

ibib
∪= ;

Eliminate redundant exploits of (t)Cib ;

{ }0)g(e|(t)Ce(t)D j

ib

j

ib >∉= ;

end while;

return (t)Cib ;

end procedure

Iranian Journal of Electrical & Electronic Engineering, Vol. 2, Nos. 3 & 4, July 2006 111

Different types of services and vulnerabilities available

on the network hosts are introduced in Table A.1 of

Appendix A.

The RedHat host on the internal network is running ftp

and ssh services. The Fedora host is running several

services: LICQ chat software, Squid web proxy, ftp and

a database. The LICQ client lets Linux users exchange

text messages over the Internet. The Squid web proxy is

a full-featured web proxy cache. It stores requested

Internet objects on a system closer to the requesting site

than to the source. Web browsers can then use the local

Squid cache as a proxy server, reducing access time as

well as bandwidth consumption. The PublicServer host

on the DMZ network is running IIS and Exchange

services. The connectivity information between the

network hosts is shown in Table 1. In this Table, each

entry corresponds to a pair of)h,(h ts in which sh is

the source network host and th is the target network

host. Every entry has five boolean values. These values

are ‘T’ if the network host sh can connect to the

network host th on the ports of ,http ,licq ,ftp ,ssh

and smtp , respectively.

The intruder launches his attack starting from a single

network host, called Intruder, which lies on the outside

network. His goal is to disrupt the database service on

the network host Fedora. To achieve this goal, the

intruder should gain the root privilege on this network

host.

Table 1 Network connectivity information.

Host Intruder Server RedHat Windows Fedora

Intruder F,F,F,F,F T,F,F,F,T F,F,F,F,F F,F,F,F,F F,F,F,F,F

Server F,F,F,F,F T,F,F,F,T F,F,T,T,F F,F,F,F,F T,T,T,F,F

RedHat F,F,F,F,F T,F,F,F,T F,F,T,T,F F,F,F,F,F T,T,T,F,F

Windows F,F,F,F,F T,F,F,F,T F,F,T,T,F F,F,F,F,F T,T,T,F,F

Fedora F,F,F,F,F T,F,F,F,T F,F,T,T,F F,F,F,F,F T,T,T,F,F

There are wdir, fshell, and sshd_bof vulnerabilities on

the RedHat host, scripting vulnerability on the Windows

host, wdir, fshell, squid_conf, and licq_ivv

vulnerabilities on the Fedora host, and iis_bof and

exchange_ivv on the PublicServer host. Also, at and

xterm programs on the RedHat and Fedora are

vulnerable to buffer overflow.

The intruder can use ten generic exploits. In Table B.1

of Appendix B, each generic exploit is represented by

its preconditions and postconditions. The description of

each generic exploit is given in Table B.2 of Appendix

B. More information about each of the exploits is

available in the CVE List [19], which is a publicly

available list or dictionary of standardized identifiers for

common vulnerabilities and exposures.

Among the ten generic exploits shown in Table B.1, the

first eight generic exploits require a pair of network

hosts while the last two generic exploits require only

one network host. Therefore, there are totally (8 * 5 * 4)

+ (2 * 4) = 168 exploits, which the intruder can try.

Each attack scenario for the above network consists of a

subset of these 168 exploits. For example, consider the

following attack scenario:

(1)),(_ erPublicServIntruderr2riis

(2)),(_ FedoraerPublicServpssquid

(3)),(_ FedoraerPublicServr2ulicq

(4)),(_ FedoraFedorau2rxterm

The intruder first launches the iis_r2r exploit to gain

root privilege on the PublicServer host. Then he uses

the PublicServer host to launch a port scan via the

vulnerable Squid web proxy running on the Fedora

host. The scan discovers that it is possible to gain user

privilege on the Fedora host with launching the

licq_r2u exploit. After that, a simple local buffer

overflow gives the intruder root privilege on the Fedora

host. The attack graph for the above network consists of

164 attack scenarios. Each attack scenario contains from

4 to 9 exploits.

5.1.1 Experimental Results

We applied the AntNAG for minimization analysis of

the above network attack graph. To evaluate the

performance of the algorithm, we performed several

experiments.

In the first experiment, we assumed that the set of

inevitable exploits is empty, i.e., all exploits are

preventable. Therefore, the aim was to find a minimum

critical set of exploits among 168 exploits. Using the

AntNAG, the following minimum critical set of exploits

was found:

{),,(erPublicServIntruderiis_r2rC =

}),(erPublicServIntruder2uexchange_r

In the second experiment, we assumed that the generic

exploits iis_r2r, exchange_r2u, and xterm_u2r are

inevitable, i.e., the prevention of them is not feasible or

incurs high cost. Therefore, the aim was to find a

minimum critical set of exploits among 124 exploits.

Using the AntNAG, the following minimum critical set

of exploits was found:

{),,(FedoraerPublicServlicq_r2uC =

),,(FedoraRedHatlicq_r2u

),,(WindowserPublicServscript_r2u

), ,(FedoraerPublicServftp_rhosts

}) ,(FedoraRedHatftp_rhosts

While using the greedy algorithm proposed by Sheyner

et al. [4] and Jha et al. [9, 10], the following minimum

critical set of exploits was found:

{),,(WindowserPublicServscript_r2uC =

), ,(FedoraFedoraat_u2r

Iranian Journal of Electrical & Electronic Engineering, Vol. 2, Nos. 3 & 4, July 2006 112

), ,(RedHaterPublicServsshd_r2u

), ,(RedHaterPublicServftp_rhosts

), ,(FedoraerPublicServsquid_ps

}) ,(FedoraerPublicServftp_rhosts

The second experiment shows the AntNAG can find a

critical set of exploits with less cardinality.

In the experiments, the AntNAG parameters were set to

1τ0 = , 1α = , 0.1ξ = , and 0.1ρ = . The number of

ants was set to 10m = and the maximum number of

iterations was set to 50tm = .

5.2 Large-Scale Network Attack Graphs

A large computer network builds upon multiple

platforms, runs different software packages and

supports several modes of connectivity. Despite the best

efforts of software architects and developers, each

network host inevitably contains a number of

vulnerabilities. Several factors can make network attack

graphs larger so that finding a minimum critical set of

exploits becomes more difficult. An obvious factor is

the size of the network under analysis. Our society has

become increasingly dependent on computer networks

and the trend towards larger networks will continue. For

example, there are enterprises today consisting of tens

of thousands of network hosts. Also, less secure

networks clearly have larger network attack graphs.

Each network host might have several exploitable

vulnerabilities. When considered across a large

enterprise, network attack graphs become potentially

large [20].

Table 2 Large-scale network attack graphs.

Network

Attack

Graph

Cardinality of

the Set of

Exploits (n)

Cardinality of

the Set of Attack

Scenarios (l)

Average

Cardinality of

Attack Scenarios

1NAG 100 1000 5.93

2NAG 200 2000 6.01

3NAG 400 4000 5.99

4NAG 400 6000 5.99

5NAG 800 8000 6.01

6NAG 800 10000 6.04

7NAG 100 1000 7.56

8NAG 200 2000 7.55

9NAG 400 4000 7.52

10NAG 400 6000 7.48

11NAG 800 8000 7.48

12NAG 800 10000 7.50

In order to further evaluate the performance of the

AntNAG, we randomly generated 12 large-scale

network attack graphs, denoted by ,1NAG ,2NAG ...,

12NAG . For each network attack graph, we considered

different values for the cardinalities of E and S , where

E is the set of known exploits and S is the set of

attack scenarios represented by the network attack

graph. In ,1NAG ..., 6NAG , attack scenarios contain

from 3 to 9 exploits while in ,7NAG ..., 12NAG , attack

scenarios contain from 3 to 12 exploits.

Table 2 shows the cardinality of the set of known

exploits, the cardinality of the set of attack scenarios,

and the average cardinality of attack scenarios for each

generated network attack graph.

5.2.1 Experimental Results

We applied the AntNAG for minimization analysis of

the above large-scale network attack graphs. We

performed 10 runs of the algorithm with different

random seeds and reported the best cardinality and the

average cardinality of critical sets of exploits obtained

from these 10 runs. We also applied the greedy

algorithm proposed by Sheyner et al. [4] and Jha et al.

[9, 10] for minimization analysis of the above network

attack graphs.

As shown in Table 3, the AntNAG outperforms the

greedy algorithm and finds critical sets of exploits with

less cardinality. Also, the AntNAG performs

significantly better than the AntNAG without the local

search heuristic. On average, the cardinality of critical

sets of exploits found by the AntNAG and the AntNAG

without the local search heuristic are, respectively,

9.98% and 7.20% less than the cardinality of critical

sets of exploits found by the greedy algorithm.

Table 3 Cardinality of critical set of exploits found by the

AntNAG and the greedy algorithm.

AntNAG
AntNAG

without LS
Network

Attack

Graph Best Average Best Average

Greedy

Algorithm

[4, 9, 10]

1NAG 44 44.5 44 44.9 50

2NAG 87 88.5 91 92.7 98

3NAG 177 178.9 182 182.9 197

4NAG 198 199.3 202 203.7 221

5NAG 358 361.1 373 376.1 397

6NAG 373 380.1 396 397.8 417

7NAG 39 39.3 39 39.5 45

8NAG 81 81.8 84 85.3 91

9NAG 159 161.7 164 165.4 182

10NAG 180 181.8 184 185.6 200

11NAG 326 329.1 341 343 362

12NAG 346 348.8 361 365.4 388

In the experiments, the AntNAG parameters were set to

1τ0 = , 1α = , and 0.1ξ = . The number of ants was set

to 15m = and the maximum number of iterations was

set to 100tm = . For minimization analysis of 1NAG

Iranian Journal of Electrical & Electronic Engineering, Vol. 2, Nos. 3 & 4, July 2006 113

and 7NAG , ρ was set to 0.1, for minimization analysis

of 2NAG , 3NAG , 4NAG , 8NAG , 9NAG and 10NAG ,

ρ was set to 0.05, and for minimization analysis of the

other network attack graphs, ρ was set to 0.025.

Figures 7 to 10 show the progress of the average

cardinality of the global-best solution (i.e., the best

critical set of exploits found from the first iteration of

the algorithm), obtained from 10 runs of the AntNAG

and 10 runs of the AntNAG without the local search

heuristic for minimization analysis of 4NAG , 6NAG ,

9NAG , and 11NAG , respectively. The cardinality of the

global-best solution is expected to be as small as

possible. As the figures show, the local search heuristic

is essential for the construction of high-quality critical

sets of exploits. This is because after improving the

iteration-best solution by the local search heuristic,

pheromone trails are updated on the exploits of the

locally optimized solution.

197

199

201

203

205

207

209

211

213

215

217

219

221

223

225

227

0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
 E

x
p
lo

it
s

Iteration

AntNAG

AntNAG without LS

Fig. 7 Progress of the average cardinality of the global-best solution of the AntNAG and the AntNAG without the local search

heuristic on NAG4.

376

380

384

388

392

396

400

404

408

412

416

420

424

428

432

436

0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
 E

x
p
lo

it
s

Iteration

AntNAG

AntNAG without LS

Fig. 8 Progress of the average cardinality of the global-best solution of the AntNAG and the AntNAG without the local search

heuristic on NAG6.

Iranian Journal of Electrical & Electronic Engineering, Vol. 2, Nos. 3 & 4, July 2006 114

161

163

165

167

169

171

173

175

177

179

181

183

185

187

189

191

0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
 E

x
p
lo

it
s

Iteration

AntNAG

AntNAG without LS

Fig. 9 Progress of the average cardinality of the global-best solution of the AntNAG and the AntNAG without the local search

heuristic on NAG9.

326

330

334

338

342

346

350

354

358

362

366

370

374

378

382

386

0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
 E

x
p
lo

it
s

Iteration

AntNAG

AntNAG without LS

Fig. 10 Progress of the average cardinality of the global-best solution of the AntNAG and the AntNAG without the local search

heuristic on NAG11.

Figures 11 to 14 show the effect of the different values

of the global evaporation rate, ρ , on the performance of

the AntNAG. The results were obtained from 10 runs of

the AntNAG for minimization analysis of 3NAG ,

6NAG , 10NAG , and 11NAG . The figures suggest that by

decreasing the value of the global evaporation rate ρ ,

the average cardinality of the global-best solution will

decrease. For small values of ρ , the existing pheromone

trails on exploits evaporate slowly, while the influence

of the iteration-best solution is dampened.

Iranian Journal of Electrical & Electronic Engineering, Vol. 2, Nos. 3 & 4, July 2006 115

176

178

180

182

184

186

188

190

192

194

196

198

200

0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
 E

x
p
lo

it
s

Iteration

ρ = 0.05

ρ = 0.1

ρ = 0.3

ρ = 0.5

Fig. 11 Effect of the global evaporation rate on the performance of the AntNAG on NAG3.

376

380

384

388

392

396

400

404

408

412

416

420

424

0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
 E

x
p
lo

it
s

Iteration

ρ = 0.025

ρ = 0.05

ρ = 0.1

ρ = 0.3

Fig. 12 Effect of the global evaporation rate on the performance of the AntNAG on NAG6.

Iranian Journal of Electrical & Electronic Engineering, Vol. 2, Nos. 3 & 4, July 2006 116

180

182

184

186

188

190

192

194

196

198

200

202

204

0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
 E

x
p
lo

it
s

Iteration

ρ = 0.05

ρ = 0.1

ρ = 0.5

ρ = 0.3

Fig. 13 Effect of the global evaporation rate on the performance of the AntNAG on NAG10.

326

330

334

338

342

346

350

354

358

362

366

370

374

0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
 E

x
p
lo

it
s

Iteration

ρ = 0.025

ρ = 0.05

ρ = 0.1

ρ = 0.3

Fig. 14 Effect of the global evaporation rate on the performance of the AntNAG on NAG11.

It should be noted that the best value of ρ is different

for network attack graphs with different scales. This is

because, as defined in Eq. (8), the amount of pheromone

deposited by the iteration-best ant is obtained as a

function of the cardinality of the set of exploits. The

larger the cardinality of the set of exploits, the lower the

value of ρ is chosen.

Figures 15 and 16 show the effect of the number of ants,

m , on the performance of the AntNAG, obtained from

10 runs of the AntNAG for minimization analysis of

4NAG and 12NAG . As the figures show, when using a

very small number of ants, the algorithm shows a

premature stagnation behavior. This is because the

fewer the number of ants, the less the exploration ability

of the algorithm, and consequently the less information

about the search space is available to all ants.

Iranian Journal of Electrical & Electronic Engineering, Vol. 2, Nos. 3 & 4, July 2006 117

197

199

201

203

205

207

209

211

213

215

217

219

221

0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
 E

x
p
lo

it
s

Iteration

m = 15

m = 10

m = 2

Fig. 15 Effect of the number of ants on the performance of the AntNAG on NAG4.

343

347

351

355

359

363

367

371

375

379

383

387

391

0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
 E

x
p
lo

it
s

Iteration

m = 15

m = 10

m = 2

Fig. 16 Effect of the number of ants on the performance of the AntNAG on NAG12.

6 Time Complexity

Let m be the number of ants and mt be the maximum

number of iterations. At each iteration t of the

AntNAG, each ant k starts with an empty set and

constructs a critical set of exploits (t)Ck by

incrementally adding exploits until all attack scenarios

are hit. The construction of (t)Ck takes l)O(n ⋅ time,

where n is the cardinality of the set of preventable

exploits and l is the cardinality of the set of attack

scenarios. The redundant exploits of (t)Ck are then

eliminated using the algorithm in Fig. 4, which runs in

l)O(n2 ⋅ time. After that, the iteration-best solution

(t)Cib is improved by the local search heuristic in

Fig. 5, which runs in l)O(n3 ⋅ time. Finally, the

pheromone trails are updated using the global updating

rule, which takes O(n) time. The overall time

complexity of the AntNAG is therefore l)nO(t 3

m ⋅⋅ .

Strictly speaking, it is m))(nlnO(t 2

m +⋅⋅⋅ , but we

usually set m to a small value. Hence, the time

complexity can be simplified to l)nO(t 3

m ⋅⋅ . Similarly,

the overall time complexity of the AntNAG without the

local search heuristic is l)nmO(t 2

m ⋅⋅⋅ . It should be

Iranian Journal of Electrical & Electronic Engineering, Vol. 2, Nos. 3 & 4, July 2006 118

noted that the time complexity of the greedy algorithm

proposed by Sheyner et al. [4] and Jha et al. [9, 10] is

l)O(n2 ⋅ .

7 Conclusions

Each network attack graph represents the collection of

possible attack scenarios in a computer network. Each

attack scenario is a sequence of exploits that leads to an

undesirable state. An example of an undesirable state is

one that the intruder gains root privilege on a critical

network host. The aim of minimization analysis of a

network attack graph is to find a minimum critical set of

exploits, which must be prevented to thwart an intruder.

This problem is in fact NP-hard.

In this paper, we presented an ant colony optimization

algorithm, called AntNAG, for minimization analysis of

network attack graphs. We reported the results of

applying this algorithm for minimization analysis of a

sample network attack graph and 12 large-scale network

attack graphs. We also applied the greedy algorithm

proposed by Sheyner et al. [4] and Jha et al. [9, 10] for

minimization analysis of the above network attack

graphs. On average, the cardinality of critical sets of

exploits found by the AntNAG and the AntNAG

without the local search heuristic were, respectively,

9.98% and 7.20% less than the cardinality of critical

sets of exploits found by the greedy algorithm. The

results of experiments show that the AntNAG performs

significantly better than the AntNAG without the local

search heuristic and finds a critical set of exploits with

less cardinality. This shows the significance of the local

search heuristic in the AntNAG.

Acknowledgments

This work was supported in part by ITRC.

References

[1] Abadi M. and Jalili S., “Automatic discovery of

network attack scenarios using SPIN model

checker”, In Proceedings of the International

Symposium on Telecommunications, pp. 81-86,

Shiraz, Iran, September 2005.

[2] Dacier M., Deswarte Y., and Kaâniche M.,

“Quantitative assessment of operational security:

Models and tools”, Technical Report, LAAS

Research Report 96493, Laboratory for Analysis

and Architecture of Systems, May 1996.

[3] Phillips C. and Swiler L. P., “A graph-based

system for network-vulnerability analysis”, In

Proceedings of the 1998 Workshop on New

Security Paradigms, pp. 71-79, Charlottesville,

VA, USA, September 1998.

[4] Sheyner O., Haines J., Jha S., Lippmann R., and

Wing J. M., “Automated generation and analysis

of attack graphs”, In Proceedings of the 2002

IEEE Symposium on Security and Privacy, pp.

273-284, Berkeley, CA, USA, May 2002.

[5] NuSMV. “NuSMV: A New Symbolic Model

Checker”. http://afrodite.itc.it:1024/nusmv/.

[6] Ammann P., Wijesekera D., and Kaushik S.,

“Scalable, graph-based network vulnerability

analysis”, In Proceedings of the 9
th
 ACM

Conference on Computer and Communications

Security, pp. 217-224, Washington, DC, USA,

November 2002.

[7] Noel S., Jacobs M., Kalapa P., and Jajodia S.,

“Multiple coordinated views for network attack

graphs”, In Proceedings of the IEEE Workshop

on Visualization for Computer Security (VizSEC

2005), pp. 99-106, Minneapolis, MN, USA,

October 2005.

[8] Noel S. and Jajodia S., “Understanding complex

network attack graphs through clustered

adjacency matrices”, In Proceedings of the 21
st

Annual Computer Security Applications

Conference (ACSAC 2005), pp. 160-169, Tucson,

Arizona, USA, December 2005.

[9] Jha S., Sheyner O., and Wing J. M.,

“Minimization and reliability analysis of attack

graphs”, Technical Report, School of Computer

Science, Carnegie Mellon University, February

2002.

[10] Jha S., Sheyner O., and Wing J. M., “Two formal

analyses of attack graphs”, In Proceedings of the

15
th
 IEEE Computer Security Foundations

Workshop, pp. 49-63, Cape Breton, Nova Scotia,

Canada, June 2002.

[11] Dorigo M. and Di Caro G., “The ant colony

optimization meta-heuristic”, In D. Corne, M.

Dorigo, and F. Glover (Eds.), New Ideas in

Optimization, pp. 11-32, McGraw Hill, London,

UK, 1999.

[12] Dorigo M. and Stützle T., Ant Colony

Optimization, MIT Press, Cambridge, MA, USA,

2004.

[13] Dorigo M., Di Caro G., and Gambardella L. M.,

“Ant algorithms for discrete optimization”,

Artificial Life, Vol. 5, No. 2, pp. 137-172, 1999.

[14] Dorigo M. and Stützle T., “The ant colony

optimization metaheuristic: Algorithms,

applications and advances”, In F. Glover and G.

Kochenberger (Eds.), Handbook of

Metaheuristics, Vol. 57, pp. 251-285, Kluwer

Academic Publishers, Norwell, MA, USA, 2002.

[15] Stützle T. and Dorigo M., “ACO algorithms for

the traveling salesman problem”, In K. Miettinen

et al. (Eds.), Evolutionary Algorithms in

Engineering and Computer Science, pp. 163-183,

John Wiley & Sons, New York, NY, USA, 1999.

[16] Merkle D., Middendorf M., and Schmeck H.,

“Ant colony optimization for resource

constrained project scheduling”, In Proceedings

of the Genetic and Evolutionary Computation

Conference (GECCO 2000), pp. 893-900, Las

Iranian Journal of Electrical & Electronic Engineering, Vol. 2, Nos. 3 & 4, July 2006 119

Vegas, NV, USA, July 2000.

[17] Di Caro G. and Dorigo M., “AntNet: Distributed

stigmergetic control for communications

networks”, Journal of Artificial Intelligence

Research (JAIR), Vol. 9, pp. 317-365, 1998.

[18] Deraison R., “Nessus Vulnerability Scanner”.

http://www.nessus.org/.

[19] CVE List, “CVE: Common Vulnerabilities and

Exposures”. http://cve.mitre.org/.

[20] Ammann P., Pamula J., Ritchey R., and Street J.,

“A host-based approach to network attack

chaining analysis”, In Proceedings of the 2005

Annual Computer Security Applications

Conference (ACSAC 2005), pp. 72-84, Tucson,

AZ, USA, December 2005.

Appendix A. Description of Vulnerabilities

Table A.1 Types of services and vulnerabilities running on the

network hosts.

)(hiis_bof
IIS web server has buffer overflow

vulnerability on host h

)(hvvexchange_i
Exchange mail server has input validation

vulnerability on host h

)(hsquid_conf
Squid web proxy is misconfigured on

host h

)(hlicq_ivv
LICQ client has input validation

vulnerability on host h

)(hsshd_bof
sshd server has buffer overflow

vulnerability on host h

)(hscripting HTML scripting is enabled on host h

)(hftp ftp service is running on host h

)(hwdir ftp home directory is writable on host h

)(hfshell ftp user has executable shell on host h

)(hssh ssh service is running on host h

)(hxterm_bof
xterm program has buffer overflow

vulnerability on host h

)(hat_bof
at program has buffer overflow

vulnerability on host h

)(hdatabase database service is running on host h

Appendix B. Description of Exploits

Table B.1 Exploit templates.

Exploit Preconditions Postconditions

),(ts hhiis_r2r

)(thiis_bof

),,(httphhC ts

user)(≥shplvl

root)(<thplvl

)(thiis¬

root:)(=thplvl

),(ts hh2uexchange_r

)(thvvexchange_i

),,(smtphhC ts

user)(≥shplvl

none)(=thplvl

user:)(=thplvl

),(ts hhsquid_ps

)(thsquid_conf

scan¬

),,(httphhC ts

user)(≥shplvl

scan

),(ts hhlicq_r2u

)(thlicq_ivv

scan

),,(licqhhC ts

user)(≥shplvl

none)(=thplvl

user:)(=thplvl

),(ts hhscript_r2u

)(thscripting

),,(httphhC st

user)(≥shplvl

none)(=thplvl

user:)(=thplvl

),(ts hhsshd_r2r

)(thsshd_bof

),,(sshhhC ts

user)(≥shplvl

root)(<thplvl

)(thssh¬

root:)(=thplvl

),(ts hhftp_rhosts

)(thftp

)(thwdir

)(thfshell

),(st hhT¬

),,(ftphhC ts

user)(≥shplvl

),(st hhT

),(ts hhrsh_r2u

),(st hhT

user)(≥shplvl

none)(=thplvl

user:)(=thplvl

),(tt hhxterm_u2r
)(thxterm_bof

user)(=thplvl
root:)(=thplvl

),(tt hhat_u2r
)(that_bof

user)(=thplvl
root:)(=thplvl

Table B.2 Description of generic exploits.

Exploit Description

iis_r2r
Buffer overflow vulnerability in the IIS

web server allows remote intruders to gain

root shell on the target network host

2uexchange_r

The OLE component in the Microsoft

Exchange mail server does not properly

validate the lengths of messages for

certain OLE data, which allows remote

intruders to execute arbitrary code

squid_ps
The intruder can use a misconfigured

Squid web proxy to conduct unauthorized

activities such as port scanning

Iranian Journal of Electrical & Electronic Engineering, Vol. 2, Nos. 3 & 4, July 2006 120

licq_r2u

The intruder can send a specially crafted

URL to the LICQ client to execute

arbitrary commands on the target network

host

script_r2u

Microsoft Internet Explorer allows remote

intruders to execute arbitrary code via

malformed Content-Type and Content-

Disposition header fields that cause the

application for the spoofed file type to

pass the file back to the operating system

for handling rather than raise an error

message

sshd_r2r
Buffer overflow vulnerability in the sshd

server allows remote intruders to gain root

shell on the target network host

ftp_rhosts

Using ftp vulnerability, the intruder

creates a .rhosts file in the ftp home

directory, creating a remote login trust

relationship between his network host and

the target network host

rsh_r2u

Using an existing remote login trust

relationship between two hosts, the

intruder logs in from one machine to

another, getting a user shell without

supplying a password

xterm_u2r
Buffer overflow vulnerability in the xterm

program allows local users to gain root

shell on the target network host

at_u2r
Buffer overflow vulnerability in the at

program allows local users to gain root

shell on the target network host

Mahdi Abadi is a Ph.D. student

of computer engineering at

Tarbiat Modares University. He

received the M.Sc. degree in

software engineering from that

university in 2001, and the B.Sc.

degree in software engineering

from Ferdowsi University of

Mashhad in 1998. His main

research interests are network

security, intrusion detection, evolutionary algorithms,

and data mining. Currently, Mahdi Abadi works on his

Ph.D. thesis on network vulnerability analysis.

Saeed Jalili received the Ph.D.

degree from Bradford University in

1991 and the M.Sc. degree in

computer science from Sharif

University of Technology in 1979.

Since 1992, he has been assistant

professor at the Tarbiat Modares

University. His main research

interests are machine learning,

intrusion detection, security protocol

verification, and software runtime

verification.

