

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 4, 2021 1

Iranian Journal of Electrical and Electronic Engineering 04 (2021) 2011

FPGA’s Dual-Port ROM-Based 8x8 Multiplier for Area

Optimized Implementation of DSP Systems

A. Pathan*,**(C.A.) and T. Memon***

Abstract: FPGA’s block memory may be programmed as a single or dual-port RAM/ROM

module that leads to an area-efficient implementation of memory-based systems. In this

contest, various works of carrying out an optimized implementation of simple to complex

DSP systems on embedded building blocks may be seen. The multiplier is a core element of

the DSP systems, and in implementing a memory-based multiplier, it is observed that one

of the operands is kept constant, hence leading the design to a constant-coefficient

multiplication. This paper shows Virtex-7 FPGA’s dual-port ROM-based implementation

of an 8x8 variable-coefficient multiplier that may be used in several simple to complex

DSP applications. The novelty of the proposed design is to configure the block ROM in

dual-port mode and, hence, get four partial products in two clock cycles and introduce two

unconventional adder approaches for partial product addition. This approach leads to fully

resource utilization and the provision of a variable-coefficient multiplier. The work also

shows the comparison of proposed architecture with already existing memory-based

implementations and concludes the work as a novel step towards the efficient memory-

based implementation of multiplier core.

Keywords: Block Memory, Digital Signal Processing, FPGA, Multiplier.

1 Introduction1

HE FPGA may be used to implement computation-

intensive algorithms more efficiently in comparison

to DSP or microprocessors[1]. The three main factors

that play an essential role in FPGA-based design are the

targeted FPGA architecture, electronic design

automation (EDA) tools, and design techniques

employed at the algorithmic level using hardware

description languages [2].

Iranian Journal of Electrical and Electronic Engineering, 2021.

Paper first received 12 October 2020, revised 08 April 2021, and
accepted 25 April 2021.

* The author is with the School of Information Technology and

Engineering, Melbourne Institute of Technology, Melbourne,
Australia.

** The author is with the Electronic Engineering Department, Quaid-
e-Awam University of Engineering, Science & Technology, Larkana

Campus, Pakistan.

E-mail: pathan_aneela@quest.edu.pk.
*** The author is with the School of Information Technology and

Engineering, Melbourne Institute of Technology, Melbourne,

Australia and Department of Electronic Engineering, Mehran
University of Engineering and Technology, Jamshoro, Pakistan.

E-mail: tayabuddin.memon@faculty.muet.edu.pk.

Corresponding Author: A. Pathan.
https://doi.org/10.22068/IJEEE.17.4.2011

 For example, Xilinx Virtex-7 FPGA, a selected

device, contains several features and embedded DSP

cores to strengthen its arithmetic capabilities along with

dual-or, single-port RAM modules, ROM modules,

synchronous FIFOs, and registers that may be easily

implemented using the Xilinx CORE Generator [3].

 The block RAM stores up to 36 kb of data and can be

configured as either two independent 18 kb RAMs or

one 36 Kb RAM. Each memory can be addressed

through single ports and configured as a dual-port

RAM/ROM.

 Besides, the n-bit input Look-up table of an FPGA can

be used for storing the truth table of an n-input function,

or 2n–bit data consequently. For example, a LUT with

three inputs can store the truth table of any 3-input

function or an eight-bit word.

 Taking the benefit of this architectural flexibility, much

work may be seen in the domain of memory-

based (Look-up tables (LUT), BRAM) DSP systems

design, especially the multiplier.

 The multiplier is a core element of the DSP system,

and in implementing a memory-based multiplier, it is

observed that one of the operands is kept constant,

hence leading the design to constant-coefficient

multiplication.

 This paper shows Virtex-7 FPGA’s dual-port ROM-

T

mailto:Pathan_aneela@quest.edu.pk
mailto:tayabuddin.memon@faculty.muet.edu.pk
https://doi.org/10.22068/IJEEE.17.4.2011

FPGA’s Dual-Port ROM-Based 8x8 Multiplier for Area

… A. Pathan and T. Memon

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 4, 2021 2

based implementation of an 8x8 variable-coefficient

multiplier that may be used in several simple to

complex DSP applications.

 The proposed design’s novelty is to configure the

block ROM in dual-port mode and hence get a total of

four partial products in two clock cycles and introduce

two unconventional adder approaches for partial product

addition.

 This approach leads to fully resource utilization and

the provision of a variable-coefficient multiplier.

 Besides, the comparison of proposed architecture with

already existing memory-based implementations is also

given, and in conclusion, it is shown that the proposed

work is a novel step towards the efficient memory-based

implementation of multiplier core.

 The paper further proceeds as follows. In Section 2,

previous work done in the domain of memory-based

multiplier is given, followed by the proposed design in

Section 3. The FPGA-based implementation and results

are given in Section 4, and the conclusion and future

work are reported in Section 5.

2 Previous Works

 The FPGA-based implementation of a memory-based

multiplier is possible in two ways 1) using the

RAM/ROM module, 2) The look-up table-based design.

 The two common approaches in LUT-based memory

design are: using Direct-LUT to compute the

multiplication [4-10] and to compute the inner-product

using Distributed Arithmetic (DA) [11-15].

 In Direct-LUT-based computation, all the possible

product terms of the input multiplicand with the fixed

coefficients are pre-computed and stored directly in the

LUT, and thus, the multiplication is done [16].

 In DA-based computation, the N-point vector’s inner-

product with the N-bit vector is pre-computed and

stored in LUT [11].

 LUT’s size increases with the word length of the input

if the product term is directly stored in LUT, whereas if

the inner product is stored, the size increases with the

length of the inner product.

 As the memory-based multiplier requires an adequate

amount of memory of size 22L, where L is the word

length of the operands, most of the work in the research

leads to the design of a fixed-coefficient multiplier

(leading to memory reduction from 22L to 2L).

 One of the earlier techniques to implement fixed-

coefficient multipliers using Look-up table-based

memory of FPGA was developed by Xilinx [17]. This

relies on look-up tables rather than a network of adders

to perform most of the multiplication.

 As it is evident that there are sixteen possible results

when a four-bit number is multiplied by an eight-bit

fixed number (because there are sixteen different four-

bit numbers). Thus a four-bit variable time eight-bit

constant multiplier can be implemented by a sixteen-

entry look-up table. Each entry must be twelve-bits (the

width of the largest possible output). This idea may

easily be understood as follows: Let the eight-bit

constant multiplier is 25010 (111110102), and four-bit

variable multiplicands are 0-15(0000-1111). So the

LUT entries are shown in Table 1.

 With the same approach, an eight-bit by eight-bit

constant multiplier may be built using two of this four-

bit by eight-bit constant multipliers in the configuration

shown in Fig 1.

 Besides LUT-based implementation, another way to

get the same results is to use FPGA’s built-in memory

(RAM/ROM) modules.

 In [17] and [19], an eight-bit constant multiplier is

implemented using the Xilinx 4010 FPGA’s Block-

ROM. The designed architecture is shown in Fig. 2.

 As in a 4X8 multiplier, we need a total of 16-LUTS,

each twelve-bit wide; the same is required for

RAM/ROM-based multiplier. The output of each

memory is twelve-bit wide, but to save some of the

resources, an eight-bit-by twelve-bit adder is used to

add two outputs and then concatenates the results with

the remaining for-bits to get the total product sixteen-bit

wide.

Table 1 LUT values for a constant multiplier (25010).

MP* MC* PR* 12-bit-value stored in LUT

250

0 (0000) 0 LUT0=000000000000

1 (0001) 250 LUT1=000011111010

2 (0010) 500 LUT2=000111110100

3 (0011) 750 LUT3=001011101110

4 (0100) 1000 LUT4=001111101000

5 (0101) 1250 LUT5=010011100010

6 (0110) 1500 LUT6=010111011100

7 (0111) 1750 LUT7=011011010110

8 (1000) 2000 LUT8=011111010000

9 (1001) 2250 LUT9=100011001010

10(1010) 2500 LUT10=100111000100

11(1011) 2750 LUT11=101010111110

12(1100) 3000 LUT12= 101110111000

13(1101) 3250 LUT13=110010110010

14(1110) 3500 LUT14=1101101011100

15(1111) 3750 LUT15= 111010100110

*MP = Multiplier, *MC = Multiplicand, *PR = Product value.

LUTB-

ADDER

LUT A-

8-Bit Data

4-Bit 4-Bit

12 Bit 8 Bit

12 Bit

4 Bit

Fig. 1 Basic LUT-based constant multiplier [18].

FPGA’s Dual-Port ROM-Based 8x8 Multiplier for Area

… A. Pathan and T. Memon

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 4, 2021 3

Adder [3:0]

RAM/ROM

16X12 bits

Data [11:0]

ADDER

Input [7:0]

[7:4] [3:0]

[11:0] [11:4]

Product [15:4]

[3:0]

Adder [3:0]

RAM/ROM

16X12 bits

Data [11:0]

Product [3:0]

Multiplier #1

a Constant

Multiplier # 2

Constant b

c d
PE

Replaced by

2
L

Word

Dual-Port ROM

c d

a b

Fig. 2 Basic architecture of an eight-bit constant multiplier using

memory [19].

Fig. 3 Dual-port ROM based implementation of N-bit-by-N-bit

multiplier [4].

 If one of the two operands is fixed, a significant

reduction in the memory size from 22L to 2L is obtained.

This idea is reflected in [4], where the dual-port ROM is

used to replace two constant multipliers (any N-bit

multiplier may be designed using two N/2-bit-by-N/2

multipliers and then adding the partial products to get

the N-bit multiplier).

 Fig. 3 shows an N-bit-by-N-bit memory-based

implementation [4].

 The work given in [6] shows more efficient memory-

based systolic array implementation of the unified

architecture of DCT/DST/IDCT/IDST, using dual-port

ROMs and appropriate hardware sharing methods.

 In design (Fig. 4), the conventional constant multiplier

is replaced with two dual-port ROMs, each of size of

22L/2.

 In contrast to the efficient utilization of selected

FPGA’s resources, a plausible work also reports an

optimized design with algorithm optimization.

 For example, in DA-based computation, offset binary

coding [11, 15], and group distributed technique [13]

are proposed to decrease the size of the memory.

Whereas under Direct-LUT based computation, many

techniques that are proposed are given in [10, 20, 21].

 Furthermore, in [10, 22], authors have proposed the

OMS approach, where only the odd multiple product

terms are stored in memory. Thus the size of the

memory is reduced by half. Similarly, in [23, 24],

another technique, namely, Anti-symmetric Product

Coding (APC), has been detailed, where the size of the

LUT is reduced again. Also, it requires fewer overhead

circuits as compared to the work of [10].

 In [25], authors have combined both OMS and APC

techniques and developed an efficient architecture that

contains the advantages of both of the above techniques.

 In the most recent work reported in [26], two

Multiplier #1

a Constant

Multiplier # 2

Constant b

c d
PE

Replaced by

2
L/2

Word

Dual-Port ROM

c

d

a b

2
L/2

Word

Dual-Port ROM

Fig. 4 A reduced word-length multiplier replaced by a dual-

port ROM [6].

memory-based multipliers are proposed and

implemented on Vertex 7 XC7vx330tffg1157 FPGA.

The first technique is EMS-LUT based multiplier,

where even multiplies of the product terms are stored in

memory (a single-port ROM to store the pre-calculated

even terms of the product value of four-bit input), where

an external combinational logic circuit is used to derive

the odd multiplies of the product term. The second

approach, Modified OMS-based multiplier, is the

variant of already existing OMS multiplier design [21]

in which some changes are brought in the external

control circuit used to derive the even product terms.

 All the research in one way or another covers a

FPGA’s Dual-Port ROM-Based 8x8 Multiplier for Area

… A. Pathan and T. Memon

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 4, 2021 4

M0M1

N0N1

M0N0M1N0

M0N1M1N1

PP1

PP2

X

M7

M6

M5

M4

M3

M2

M1

M0

N7 N6 N5 N4 N3 N2 N1 N0

Fig. 5 The conventional multiplication method. Fig. 6 Division of product into various parts.

 M3 M2 M1 M0

 X N3 N2 N1 N0

A M3N0 M2N0 M1N0 M0N0 pP1
 M3N1 M2N1 M1N1 M0N1 X pP2

 M3N2 M2N2 M1N2 M0N2 X X pP3

M3N3 M2N3 M1N3 M0N3 X X X pP4

 M7 M6 M5 M4

 X N3 N2 N1 N0

B M7N0 M6N0 M5N0 M4N0 pP1
 M7N1 M6N1 M5N1 M4N1 X pP2

 M7N2 M6N2 M5N2 M4N2 X X pP3

M7N3 M6N3 M5N3 M4N3 X X X pP4

Fig. 7 Product of [3:0] bits of multiplier with [3:0] bits of the

multiplicand.

Fig. 8 Product of [3:0] bits of multiplier with [7:4] bits of the

multiplicand.

 M3 M2 M1 M0
 X N7 N6 N5 N4

C M3N4 M2N4 M1N4 M0N4 pP1

 M3N5 M2N5 M1N5 M0N5 X pP2
 M3N6 M2N6 M1N6 M0N6 X X pP3

M3N7 M2N7 M1N7 M0N7 X X X pP4

 M7 M6 M5 M4
 X N7 N6 N5 N4

D M7N4 M6N4 M5N4 M4N4 pP1

 M7N5 M6N5 M5N5 M4N5 X pP2
 M7N6 M6N6 M5N6 M4N6 X X pP3

M7N7 M6N7 M5N7 M4N7 X X X pP4

Fig. 9 Product of [7:4] bits of multiplier with [3:0] bits of the

multiplicand.

Fig. 10 Product of [7:4] bits of multiplier with [7:4] bits of the

multiplicand.

constant-coefficient multiplier and indicate that the

design complexity and hardware requirement increases

with an increase in the word length of a multiplier (or

keeping it variable as original).

 To get out of this limitation and effectively utilizing

the available resources, this paper shows Virtex-7

XC7vx330tffg1157 FPGA’s dual-port ROM-based

implementation of an 8x8 unsigned integral multiplier

that may be used in several simple to complex DSP

applications.

3 Proposed Design

 In a memory-based multiplier, pre-calculated product

values are easy to obtain within the minimal processing

time, as they are stored at particular addresses masked

with operands [27].

 In general, an individual memory module is needed to

store the data values obtained by multiplying a constant

operand (multiplier) with several other operands

(multiplicands) depending on the word length.

 For understanding the concept, lets us take a 2x2

multiplier. Here the word length (in bits) of both

operands is 2, and possible two-bit values in decimals

are 0, 1, 2, and 3.

 This detail shows that a total of 2n operands are

possible with n-bit wide data. Hence, for an operand of

the same length, the total number of memory modules

needed to store the product values are 22n with an

individual size be as a 2nx2n array leading the product

length to NxN bit wide [5].

 As the word length increases, the required memory

also increases in proportion. Therefore, for area-

efficient implementation, it is needed to cut down

memory need to some extent and get required functional

verifications possible with distributed arithmetic and

efficient utilization of available resources.

 Taking the benefit of these two techniques, in our

design, we have used only a single block ROM module

in its dual-port configuration along with some

intermediate addition. The multiplier and multiplicand

size is set to 8x8 that in the conventional approach leads

to 65025 memory modules each of size 8x8 array with

sixteen-bit long product value or a total of 127 Kb

memories as an individual.

 The design strategies of this work are taken from the

concept of a conventional array multiplier. For a simple

2x2 multiplier, the concept is as follows.

 Let M, N be two-bit operand, leading M0, N0 as LSB

and M1, N1 be MSB bits of multiplicand and multiplier

consecutively. PP1 and PP2 are two partial products as

an intermediate stage, and these partial products PP1

and PP2 are then added to get the final result.

 It may be observed that in the case of two-bit

operands, we need one full-adder cascaded to one-half

adders for summing PP1 and PP2.

 If this concept is extended to an 8x8 multiplier, we

need eight partial products PP1, PP2… PP8, and one 9-

input 15-bit adder to add PP1-PP8; hence the circuit

becomes a bit complex.

 The same result may be obtained if we reduce the

operand length from 8x8 to 4x4 and then perform some

intermediate arithmetic [20]. Hence, the ROM size

necessary to replace a multiplier can be further reduced

at the cost of an extra adder [4]. Let us divide the

multiplier and multiplicand, as shown in Fig.6.

 A total of 4–4x4 multiplications would be performed

in between the operand, as codded above. If A, B, C,

and D show those multiplications, then individual may

FPGA’s Dual-Port ROM-Based 8x8 Multiplier for Area

… A. Pathan and T. Memon

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 4, 2021 5

Table 2 Memory configuration of BROM.

 Op1 1 2 3 ….. 13 14 15

Op2 0 1 2 3 ….. 13 14 15

0 0 0 0 0 ….. 0 0 0

1 0 1 2 3 ….. 13 14 15
2 0 2 4 6 ….. 26 28 30

3 0 3 6 9 ….. 39 42 45

4 0 4 8 12 ….. 52 56 60
5 0 5 10 15 ….. 65 70 75

…. …. …. …. …. …. ….. ….. ….

11 0 11 22 33 ….. 143 154 165
12 0 12 24 36 ….. 156 168 180

13 0 13 26 39 ….. 169 182 195

14 0 14 28 42 ….. 182 196 210
15 0 15 30 45 ….. 195 210 225

Dual Port

ROM

Adder

Adder

If (en=1)

add=A

else C

 A

B

 D C

A

D

D

E

R

Product

clk en

If (en=1)

add=B

else D

PORT A

PORT B

Address A

Address B

Dout A

Dout B

Clk

Fig. 11 General dual-port ROM configuration. Fig. 12 Proposed architecture of memory-based multiplier.

be written as given in Figs. 7-10.

 In dual-port block ROM, product values of a 4x4

multiplier as 16x16 array of eight-bit word length are

pre-stored; this leads to 0.25 Kb of total memory.

 Table 2 show the memory configuration for dual-port

block ROM, where Op1 and Op2 show two

operands (multiplier, multiplicand).

 In general (Fig. 11), two addresses, each N bit wide,

may be given as an input to BROM with a standard

clock, and two outputs may be achieved.

 In our proposed design (Fig. 12), the address values

are created as per partial product generation, as shown

in Figs. 7-10.

 Two outputs are possible to achieve in a single time,

so enable pin is used to select the two addresses

amongst the four. Each address is 8-bit wide (four bits

from the multiplier and four from multiplicand) and is

given at port: Address A and Address B consecutively,

and we get two pre-calculated product values at ports

Dout A and Dout B.

 As we deal with the synchronized clock approach, two

clock cycles are required to get the output port’s

data (Fig. 13).

 At the first clock cycle, addresses are given at address

ports, and on the second, the data is taken at the output

and at the same time (at second clock cycle), the

addresses of ports are replaced with the new values, and

finally, at third cycle, two other outputs are taken.

 The partial products generated are then added after

shifting the values for a particular number of bits. We

need three adders for summing product A with B, C

with D, and a final summation of those intermediated

generated values.

 Three approaches for partial product addition are

followed separately to find out efficient implementation.

 In the first design, a 3-input look-up table-based

adder (Fig. 14) is used that obeys the conventional serial

adder approach.

 Three input look-up tables are defined as truth table

given in Table 3 for sum out and carry out accordingly.

 In the second implementation, the carry-look ahead

adder is selected to sum the partial products, and in the

third and final approach, FPGA’s built-in arithmetic

core is instantiated to perform the required arithmetic.

4 FPGA-Based Implementation and Results

 The dual-port ROM-based proposed multiplier’s

architecture is implemented using Xilinx Virtex 7

XC7vx330tffg1157 FPGA and ISE 14.2 tool.

 Lacking in finding a variable coefficient memory-

based multiplier, this design is compared with an eight-

bit constant-coefficient multiplier reported in [26].

 To make comparison easy, some prevalent factors are

considered; those may give a good analysis of

consumed resources and efficiency of the system

performance.

 For example, the consumed slice count that contains

logic elements (the look-up tables) used for the control

circuitry and distributed arithmetic in a memory-based

system design tells about FPGA area consumption. The

block ROM is for storing the pre-calculated product

values, multiplexers, adder/subtractors, decoders, and

the most important performance parameters, the

observed delay, and the maximum achieved frequency.

Table 4 shows the proposed design’s implementation

results with three different adder approaches, and the

two memory-based constant-coefficient designs

reported in [26].

 As the constant-coefficient multiplier obviously would

result in less resource utilization than a variable-

coefficient multiplier, a one-to-one comparison cannot

FPGA’s Dual-Port ROM-Based 8x8 Multiplier for Area

… A. Pathan and T. Memon

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 4, 2021 6

Clk

En

Addr port A

A

MPLR [3:0]

MCAND [3:0]

MPLR [7:0]

MCAND [3:0]

MPLR [3:0]

MCAND [7:0]

MPLR [7:0]

MCAND [7:0]

MPLR [3:0]

MCAND [3:0]

MPLR [3:0]

MCAND [7:0]

Dout A
C

BDout B D

Addr port B

2-input LUT

2-input LUT

3-input LUT

S(1)

C(1)

X(0)

Y(0)

X(1)

Y(1)

S(2)

3-input LUT
C(1)

3-input LUTX(2)

Y(2)

S(3)

3-input LUTX(n-1)

Y(n-1)

3-input LUT

S(n-1)

C(n) S(n)

Fig. 13 Timing diagram of block ROM.
Table 3 Truth table for sum and carryout.

Cin X Y S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Fig. 14 Series configuration for n-bit LUT-based adder.

Table 4 FPGA-based results of proposed and conventional design.

Fact:
Prop: LUT-based

design

Prop: CLA-based

design

Prop: built-in adder-

based design
EMS [26] MOMS [26]

Slice 61 60 33 4 4

Add/Sub 0 0
1: 12 bit add:

2: 8 bit add:

1:[W+8] bit add:

2:[w+8/2] add:

1:[W+8] bit add:

2:[w+8/2] sub

RAM 1:8[256] 1:8[256] 1:8[256] 1:8[w+4] 1:8[w+4]

Deco 0 0 0 2:[3:8] 2[3:8]

Mult: 4:[2 to1] 4:[2 to 1] 4[2 to1] 2:[2 to 1] 2[2 to 1]

Delay 8.183 1.800 1.356 0.339 0.339

Freq. 122.206 555.41 737.456 2949 2949

be carried out. Alternatively, some analysis may be built

based on some ratio between two implementation

alternatives. Like, the number of slices in the proposed

built-in adder-based design is 33 that is 8(4) times in

EMS and MOMS-based design, hence approximately

showing the same number if EMS and MOMS are

designed for an 8x8 variable–coefficient multiplier.

 Another factor to compare is the number or arithmetic

primitives consumption. It is evident that the proposed

LUT-based and CLA-based design even do not require

any adder or subtractor hence needing no built-in

IPCore for arithmetic.

 The most crucial factor to consider is the amount of

memory consumption. In our proposed design, only a

single ROM of size 8x256 is required, whereas EMS

and MOMS require 8xw+4 memory for a constant-

coefficient multiplier that obviously will be 8(8xw+4) in

case of a variable-coefficient multiplier. This analysis

shows the proposed design to be very good in less

consumed memory resources.

 Similarly, no decoder is required in the proposed

design, whereas the need is evident in EMS and

MOMS-based design.

 The number of multiplexers in the proposed designs is

twice to that of their counterpart but still reflects a less

number (that is probably four times greater in variable-

coefficient multiplier).

 As the speed is related to word length and overall

circuit complexity, so the achieved frequency

(reciprocal to delay observed) of our proposed design is

far lesser than the work reported in [26], but once the

conventional constant-coefficient based implementation

is translated to a variable-co-efficient multiplier a

sufficient reduction in achieved frequency would be

observed.

FPGA’s Dual-Port ROM-Based 8x8 Multiplier for Area

… A. Pathan and T. Memon

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 4, 2021 7

5 Conclusion and Future Work

 This work shows a dual-port Rom based area

optimized implementation of an 8x8 multiplier using

Virtex 7 XC7vx330tffg1157 FPGA and ISE 14.2 tool.

 As it is already discussed, in all the implementations

in memory-based multiplier design, one of the operand

values is kept constant, resulting in some application

limitations. Keeping this into view, our proposed design

may be used in most of the DSP systems, needing

variable coefficient multipliers, especially in image

processing or in the domain of adaptive signal

processing.

 Besides, if one needs optimized area implementation

and good achieved frequency, the carry-look ahead

adder performs very well for intermediate addition.

 Hence in the future, the feasibility of using dual-port

ROM and carry-look ahead adder in more complex DSP

system designs will be seen and implemented.

Acknowledgment

 The Higher Education Commission (HEC), Pakistan,

under the National Research Program for Universities

(NRPU) grant Number 8521, National Center of

Robotics, and Automation (NCRA) joint lab titled

“Haptics, Human Robotics and Condition Monitoring

Systems (HHCMS) Lab” established at Mehran

University of Engineering and Technology, Jamshoro

provided support to this research.

References

[1] T. J. Todman, G. A. Constantinides, S. J. Wilton,

O. Mencer, W. Luk, and P. Y. Cheung,

“Reconfigurable computing: architectures and

design methods,” IEE Proceedings-Computers and

Digital Techniques, Vol. 152, pp. 193–207, 2005.

[2] M. H. Rais, “Efficient hardware realization of

truncated multipliers using FPGA,” International

Journal of Applied Science, Vol. 5, pp. 124–128,

2009.

[3] U. Xilinx, “Series FPGAs memory resources: User

guide, Report, Xilinx Inc,” San Jose, 2015.

[4] J. I. Guo, C. M. Liu, and C. W. Jen, “The efficient

memory-based VLSI array designs for DFT and

DCT,” IEEE Transactions on Circuits and Systems

II: Analog and Digital Signal Processing, Vol. 39,

pp. 723–733, 1992.

[5] D. F. Chiper, “A systolic array algorithm for an

efficient unified memory-based implementation of

the inverse discrete cosine and sine transforms,” in

International Conference on Image Processing (Cat.

99CH36348), pp. 764–768, 1999.

[6] D. F. Chiper, M. S. Swamy, M. O. Ahmad, and

T. Stouraitis, “Systolic algorithms and a memory-

based design approach for a unified architecture for

the computation of DCT/DST/IDCT/IDST,” IEEE

Transactions on Circuits and Systems I: Regular

Papers, Vol. 52, pp. 1125–1137, 2005.

[7] P. K. Meher and M. Swamy, “New systolic

algorithm and array architecture for prime-length

discrete sine transform,” IEEE Transactions on

Circuits and Systems II: Express Briefs, Vol. 54,

pp. 262–266, 2007.

[8] P. K. Meher, J. C. Patra, and M. Swamy, “High-

throughput memory-based architecture for DHT

using a new convolutional formulation,” IEEE

Transactions on Circuits and Systems II: Express

Briefs, Vol. 54, pp. 606–610, 2007.

[9] P. K. Meher, “Low-latency hardware-efficient

memory-based design for large-order FIR digital

filters,” in 6th International Conference on

Information, Communications & Signal Processing,

pp. 1–4, 2007.

[10] P. K. Meher, “New approach to LUT

implementation and accumulation for memory-based

multiplication,” in IEEE International Symposium

on Circuits and Systems, pp. 453–456, 2009.

[11] S. A. White, “Applications of distributed arithmetic

to digital signal processing: A tutorial review,” IEEE

ASSP Magazine, Vol. 6, pp. 4–19, 1989.

[12] Y. H. Chan and W. C. Siu, “On the realization of

discrete cosine transform using the distributed

arithmetic,” IEEE Transactions on Circuits and

Systems I: Fundamental Theory and Applications,

Vol. 39, pp. 705–712, 1992.

[13] H. C. Chen, J. I. Guo, T. S. Chang, and C. W. Jen,

“A memory-efficient realization of cyclic

convolution and its application to discrete cosine

transform,” IEEE transactions on Circuits and

Systems for Video Technology, Vol. 15, pp. 445–

453, 2005.

[14] P. K. Meher, “Unified systolic-like architecture for

DCT and DST using distributed arithmetic,” IEEE

Transactions on Circuits and Systems I: Regular

Papers, Vol. 53, pp. 2656–2663, 2006.

[15] J. P. Choi, S. C. Shin, and J. G. Chung, “Efficient

ROM size reduction for distributed arithmetic,” in

IEEE International Symposium on Circuits and

Systems. Emerging Technologies for the 21st

Century. Proceedings (IEEE Cat No. 00CH36353),

pp. 61–64, 2000.

[16] H. R. Lee, C. W. Jen, and C. M. Liu, “On the

design automation of the memory-based VLSI

architectures for FIR filters,” IEEE Transactions on

Consumer Electronics, Vol. 39, pp. 619–629, 1993.

FPGA’s Dual-Port ROM-Based 8x8 Multiplier for Area

… A. Pathan and T. Memon

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 4, 2021 8

[17] K. Chapman, “Fast integer multipliers fit in FPGAs

(EDN 1993 design. idea winner),” EDN Magazine,

May 1994.

[18] T. Kean, B. New, and B. Slous, “A fast constant

coefficient multiplier for the XC6200,” in

International Workshop on Field Programmable

Logic and Applications, pp. 230–236, 1996.

[19] R. J. Petersen and B. L. Hutchings, “An assessment

of the suitability of FPGA-based systems for use in

digital signal processing,” in International

Workshop on Field Programmable Logic and

Applications, pp. 293–302, 1995.

[20] P. K. Meher, “Novel input coding technique for

high-precision LUT-based multiplication for DSP

applications,” in 18th IEEE/IFIP International

Conference on VLSI and System-on-Chip, pp. 201–

206, 2010.

[21] C. Vinitha and R. Sharma, “A novel technique to

optimize the LUT used in memory based filter,” in

IEEE International Conference in Electrical,

Electronics, Computers, Communication,

Mechanical and Computing, 2018.

[22] P. K. Meher, “New approach to look-up-table

design and memory-based realization of FIR digital

filter,” IEEE Transactions on Circuits and Systems

I: Regular Papers, Vol. 57, pp. 592–603, 2009.

[23] P. K. Meher, “New look-up-table optimizations for

memory-based multiplication,” in Proceedings of

the 12th International Symposium on Integrated

Circuits, pp. 663–666, 2009.

[24] P. K. Meher, “Memory-based computation of inner-

product for digital signal processing applications,”

in International Symposium on Electronic System

Design, pp. 95–100, 2010.

[25] P. K. Meher, “LUT optimization for memory-based

computation,” IEEE Transactions on Circuits and

Systems II: Express Briefs, Vol. 57, pp. 285–289,

2010.

[26] C. Vinitha and R. Sharma, “An efficient LUT

design on FPGA for memory-based multiplication,”

Iranian Journal of Electrical and Electronic

Engineering, Vol. 15, No. 4, pp. 462–476.

[27] T. D. Memon and A. Pathan, “An approach to LUT

based multiplier for short word length DSP

systems,” in International Conference on Signals

and Systems (ICSigSys), pp. 276–280, 2018.

A. Pathan received degrees of B.E. in

Telecommunication from Mehran UET,

Jamshoro, Sindh, Pakistan in 2008 and

M.E. in Electronics Engineering from

NED University Karachi in 2010.

Currently, she is pursuing her Ph.D.

degree (FPGA-based DSP system design)

from Mehran UET. Mrs. Pathan worked

as Assistant Manager (satellite receivers’

design) in SUPARCO from March 2008 to February 2013.

Since then she serves as Assistant Professor in Quaid-Awam

University College of Engineering Science and Technology

Larkana.

T. D Memon received a B.E. (Hons.)

Electronics Engineering (First Class) and

a P.G. Diploma Telecommunication and

Control Engineering (First Class) from

Mehran University of Engineering &

Technology, Jamshoro, Pakistan, in 2003

and 2006, respectively. He received Ph.D.

from Royal Melbourne Institute of

Technology (RMIT), Melbourne,

Australia in 2012. Currently, he is working as an Associate

Professor in the Department of Electronic Engineering,

MUET. His research interests include short word length DSP

Systems, embedded systems, and their FPGA-based

implementation.

© 2021 by the authors. Licensee IUST, Tehran, Iran. This article is an open access article distributed under the

terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)

license (https://creativecommons.org/licenses/by-nc/4.0/).

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

	1 Introduction
	2 Previous Works
	3 Proposed Design
	4 FPGA-Based Implementation and Results
	5 Conclusion and Future Work
	Acknowledgment
	References

