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Abstract: This paper presents design and implementation of three new Infrared Counter-
Countermeasure (IRCCM) efficient methods using Neural Network (NN), Fuzzy System 
(FS), and Kalman Filter (KF). The proposed algorithms estimate tracking error or 
correction signal when jamming occurs. An experimental test setup is designed and 
implemented for performance evaluation of the proposed methods. The methods validity is 
verified with experiments on IR seeker reticle based on a Digital Signal Processing (DSP) 
processor. The practical results emphasize that the proposed algorithms are highly effective 
and can reduce the jamming effects. The experimental results obtained strongly support the 
potential of the method using FS to eliminate the IRCM effect 83%. 
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1 Introduction1 
After the appearance of the first-generation Infrared 
(IR) seekers and their success against aircraft targets, 
a need for countermeasures against these seekers was 
emerged. A simple countermeasure against these 
seekers is an IR flare that can be deployed from the 
aircraft under attack. The flare intensity is usually 
several times that of the target radiation. The seekers 
bias their tracking points toward the more intense 
source. The seeker thus tracks a separating flare and 
loses track of the target. As the flare became a 
versatile and relatively effective Countermeasure 
(CM), seeker designers began to develop techniques 
to reduce offset the effectiveness of the flare [1]. 

The goal of active Infrared Countermeasures 
(IRCM) is add modulated IR energy to the IR signature 
of an aircraft to counter IR guided seekers. Aircraft 
power limitations, aircraft signatures, mission analysis, 
IR seeker signal processing, IR sources, and seeker-
target simulation each play a critical role in the success 
of an active IRCM system [2]. 

Infrared Counter-Countermeasure (IRCCM) 
techniques against the IR flare may be based on the 
following differences between the target and the IR 
flare characteristics: temporal signal changes, 
spectral differences, trajectory differences (relative 
kinematics), and spatial size and distribution. Thus, a 
rapid increase in the seeker signal amplitude could 
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be indicative of a flare deployment. However, signal 
fluctuations also could be caused by intentional or 
unintentional target radiation level changes [3]. 

The goal of this paper is to propose three new 
IRCCM efficient methods using Neural Network (NN), 
Fuzzy System (FS), and Kalman Filter (KF). These 
algorithms estimate tracking error or correction signal. 
The proposed methods validity is verified with 
experiments on IR digital seeker reticle based on a DSP 
processor. This paper is organized as follow. Section 2 
describes jamming effects on seekers. The tracking error 
signal estimations based on NN, FS, and KF modeling 
are proposed in sections 3, 4, and 5, respectively. 
Experiments results are reported in section 6 and finally 
conclusions are presented in section 7. 
 
2 Jamming Effects on Seeker 

Typical modulation waveforms obtained for a 
constant radiation level target are shown in Fig. 1 [4]. 
The waveforms consist of an amplitude-modulated 
carrier. Signal processing removes the carrier and 
recovers the envelope of the waveform, which is at 
the reticle rotation frequency. The phase angle of this 
waveform relative to some reference determines the 
angular direction in which the seeker is driven to 
bring the target image to the center. Thus, a null 
point, where zero torque is applied, is obtained at the 
center of the reticle pattern since no modulation is 
generated there. 
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Fig. 1 Modulation waveforms: (a) typical modulation 
waveform, (b) carrier modulation function and (c) jammer 
modulation waveform 
 

Consider a general case of a target with a 
collocated jammer that is modulated in time. The 
radiation power seen at the detector )(tdP  may be 

represented by: 
)()]([)( trmtjPAtdP +=                                   (1) 

where, A  is the target radiation power falling on the 
reticle, )(tjP  is the time-modulated jammer power 

arriving at the reticle, and )(trm  is the reticle 

modulation function. The reticle modulation is 
periodic at the angular frequency of mω  and can be 

represented by a Fourier series: 
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If the jammer waveform is also periodic at the 
angular frequency of jω , )(tjP  can be represented 

by: 
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Substitution of Eq. (2) and Eq. (4) into Eq. (1) 
yields: 
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At the detector, )(tdP  is converted into a voltage 

or current and is processed through a carrier 
amplifier, an envelope detector, and precession 
amplifier circuits before the signal is applied to 
drive the seeker. Consider the reticle modulation 
function is as shown in Fig. 1.a; i.e.,  
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where, α  is the ratio of the radius of the image 
location (or the tracking error) to the radius of the 
reticle that provides a simplified measure of the 
modulation efficiency )10( ≤≤α , )(ttm  is a carrier 

gating function (a square wave), as shown in Fig. 1.b, 
and cω  is the carrier frequency. The Fourier series 

representation of )(ttm  is: 

]
0

)12sin[(
12

)1(2

2

1
)( tm

n
n

n

n
trm ω

π
∑
∞

=
+

+

−
+=         (8) 

Assume that the jammer modulation )(tjP  also 

has the form of a carrier at the frequency cω  and is 

gated at the frequency jω , as shown in Fig. 1.c; i.e., 

)sin1)((
2
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where, )(tjm  has the same form as )(ttm  except that 

mω  is replaced by jω  and B  is the peak jammer 

power. The Fourier series representation for )(tjm  

is: 
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where, jϕ  is an arbitrary phase angle relative to 

)(ttm . For this special case Eq. (1) becomes: 
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Assuming that the carrier amplifier passes signals 
at or near the carrier frequency only, the output of the 
carrier amplifier may be approximated by: 
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The envelope of the carrier modulation in Eq. (12) 
is: 
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The envelope signal )(tes  is further processed by 

a precession amplifier, which is tuned around the spin 
frequency mω . Assuming that jω  is close to mω , 

the seeker driving signal is given by: 
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The driving signal torques a spinning gyro 
(rotating magnet). The interaction of the rotating 
magnet and the seeker torquing signal results in the 
seeker precession rate proportional to the product of 

)(tP  and )exp( tmjω . 

 
3 IRCCM Method using Neural Network 

Multi-layer Perceptrons (MLPs) have been 
successfully used in time series prediction, however due 
to their multiple layer structure; they utilize 
computationally expensive training algorithms (such as 
the BP error) and can get stuck in local minima. In an 
attempt to overcome the problems associated with use 
of MLPs, High-Order NNs (HONNs) have been 
employed with great success. HONNs make use of 
nonlinear interactions between the inputs, thus 
functionally expanding the input space into another 
space, where linear separability, or reduction in the 
dimension of the nonlinearity is possible. However, 
HONNs suffer from the combinatorial explosion of the 
high-order terms and demonstrate slow learning, when 
the order of the network becomes excessively high. A 
simple yet efficient alternative to HONNs is the Pi-
Sigma NNs (PSNNs). PSNNs are constructed of linear 
summing units with the output layer being a single 
product unit with a nonlinear transfer function. The 
weights from the summing units to the product units are 
fixed at unity, which implies that the summing units 
layer is not hidden. The degree of a PSNN equals the 
number of summing units in the first layer [5]. Fig. 2 
shows a PSNN architecture. 

 
Fig. 2 Proposed PSNN with )1,,( qp  structure 

 

The input c  is a p  dimensional vector and ic
 is the 

thi −  component of c . The inputs are weighted and fed 
to a layer of q  linear summing units, where q  is the 

desired order of the neural network. jiw
 is an adjustable 

weight from input ic
 to the thj −  summing unit and 

jw0  is an adjustable threshold of the thj −  summing 
unit. 

To achieve a desirable set of synaptic weights to a 
pre-defined network architecture, a training process in 
needed. A training process is generally based on an 
optimization scheme to adjust the network parameters 
(mainly, the weights) in relation to a set of input-to-
output to be matched by the NN model (supervised 
learning scheme). The BP algorithm based on a gradient 
descent technique has been widely applied for general 
NN training. A BP employs a two-pass weighted 
learning algorithm known as the generalized delta rule. 
In a forward pass through the network, an error is 
detected; the measured error is then propagated 
backward through the network while weights are 
adjusted to reduce the overall error. This iterative 
process that the network goes through in reducing the 
overall error is known as gradient descent. The training 
steps are provided in the following subsection [6]. 
 
 

 
Fig. 3 Schematic diagram of proposed IRCCM method using 
NN 
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3.1 Training Steps 
At first, some variables and parameters are defined: 

=js  The output of the thj −  summing unit of hidden 

layer 
=r  The net internal activity level of output neuron  

=(.)σ  The activation function of output neuron as 

)1/(1)( xex −+=σ  
=y  The output of the last output neuron  

=Δ jiw  The adjusted value of the weight jiw  

=Δ jw0  The adjusted value of the threshold jw0  

=η  The learning-rate parameter 
=μ  The momentum value 

 
Step 1: Weights Vector Initialization 

Set all of the synaptic weights and threshold of the 
networks to small random numbers that are uniformly 
distributed. 
 
Step 2: Forward Computation 
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Step 3: Learning Process 
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Step 4: Iteration 

Increment time m  by one unit and go back to step 2. 
 

Standard supervised BP learning methodology is 
followed in these experiments with PSNN. A subset of 
available actual data is used to construct training 
samples for the network. Training of a PSNN involves 
obtaining optimal values for the learning rate, the 
momentum of learning, and the number of nodes in each 

layer. The overall error is tracked until a minima is 
obtained by altering the fore-mentioned parameters. A 
trained network which has learned the sequential 
information in the training set can then be used in 
tracking error signal estimation. A 5-3-1 architecture 
with 5 inputs, one hidden layer of 3 nodes, and one 
output is used. 

If the flare detection module declares the presence of 
a flare, the NN module estimates tracking error signal. 
The CCM tracking module will function until all flares 
exit the Field-of-View (FOV). After exit of all flares 
from FOV, the IRCCM method turns off CCM and 
returns to normal tracking. Fig. 3 shows schematic 
diagram of proposed IRCCM method using NN. 
 
4 IRCCM Method using Fuzzy System 

The generic seeker model consists of three modules: 
flare detection, CCM tracking, and normal tracking. The 
flare detection module attempts to determine whether 
flares exist within the FOV. If so, the CCM tracking 
module issues track commands in hopes of ignoring 
signals from flares. The normal tracking module issues 
track commands based on the weighted average of all 
sources within the seeker FOV [2]. 

There are three methods for flare detection. The first 
method computes the received intensity ratio for two 
different wavelength bands. It declares a flare if that 
ratio exceeds user-specified threshold. The next method 
tests the ratio of the instantaneous intensity to the 
historical average. If this ratio is above a user-defined 
threshold, it declares a flare. The final detection method 
monitors the seeker Line-of-Sight (LOS) rate. This 
method assumes the flare quickly separates from the 
aircraft thus causing a sudden change in the seeker LOS 
rate. This method declares a flare when the change in 
LOS rate exceeds a user-specified threshold. 

Normally, the seeker electronics adjusts its gain to 
always keep the target source near the center of its 
dynamic range. If a flare is present and its intensity is 
much greater than that of the target, the seeker 
electronics can reduce its gain such that the signal from 
the target will fall below the noise floor of the 
electronics. Automatic Gain Control (AGC) locking 
stops this action. The flare intensity may cause the 
seeker electronics to saturate; however, the target 
intensity will remain within the seeker’s dynamic range. 

There are four track methods after flare declaration. 
The first method is rate hold. This technique adds an 
offset to the current tracking rate and holds that value. 
The next method is angle hold. This technique offsets 
and fixes the gimbal angles of the seeker. For these two 
methods, the offset causes the seeker to push ahead of 
the target. The hope is that the flare will exit the FOV 
and the target will move from the edge towards the 
center of the seeker FOV. The next method is rate bias. 
This technique uses the average of the previous tracking 
rate and the desired track rate for normal tracking. A 
user-defined value offsets this track rate in an attempt to 
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keep the seeker pointing ahead of the target. The final 
method is angle bias. This technique uses the desired 
gimbal angles for normal tracking and offsets it by a 
user-specified amount in the direction that the target 
was last moving. This attempts to keep the seeker 
pointing ahead of the target. 

The block diagram of proposed IRCCM method 
using Fuzzy System (FS) is shown in Fig. 4. The 

ErroroV  is used as input fuzzy variable to this fuzzy 

system. Fuzzy system outputs are defined as 1K  (a 
coefficient for angle−ϕ  signal) and 2K  (a coefficient 
for tracking error signal). angle−ϕ  is angle between 
seeker axis and optical axis [7]. 

ErroroV , 1K , and 2K  are divided into two 

segments for partition the rule space. Those are fuzzied 
with a singleton membership function. The membership 
functions are defined as Fig. 5, where S  and B  express 
Small and Big, respectively.  

Two rules in the rule base are defined as following: 

2211

,:1

BisKandSisKThen

SmallisErroroVIfRule
 

2211

,:2

SisKandBisKThen

BigisErroroVIfRule
 

The Mamdani-style method with product is used for 
the inference process and the center of area method is 
employed for the defuzzification [8]. If the flare 
detection module declares the presence of a flare, the FS 
module makes tracking error signal. The CCM tracking 
module will function until all flares exit the FOV. After 
exit of all flares from FOV, the IRCCM method turns 
off CCM and returns to normal tracking.  
 
5 IRCCM Method using Kalman Filter 

The Kalman Filter (KF) is a versatile procedure for 
combining noisy sensor outputs to estimate the state of a 
system with uncertain dynamics. This filter consists of 
three factors, which are prediction, observation, and 
estimation. The dynamic model describes the behavior 
of state vector, while the observation model establishes 
the relationship between measurements and the state 
vector. Both models are associated with statistical 
properties to describe the accuracy of the models. 

 
 

 
Fig. 4 Block diagram of proposed IRCCM method using FS 

 
Fig. 5 Membership functions: (a) 

oError
V , (b) 1K , and (c) 

2K  
 
The KF is briefly described in this section. Assume 

that the random process is modeled in the form: 
][][][]1[ nwnSnAnS +=+                                          (21) 

where ]1[ +nS  is the process state vector at time 1+n , 
][nA  is a matrix relating ][nS  to ]1[ +nS  with the 

absence of a forcing function and ][nw  is white noise 
with known covariance structure. The measurement of 
the process is assumed to occur at distance points with 
the following relationship: 

][][][][ nnSnHnX γ+=                                              (22) 
where ][nX  is the measurement vector at n , ][nH  is a 
matrix giving noiseless connection between the 
measurement and state vector at n  and ][nγ  is the 
measurement error assumed to be white with a known 
covariance structure. The following KF equations for 
prediction are then derived as following [9]: 
 
Step 1: Initial estimation for ]0[Ŝ  and ]0[−P  

 
Step 2: Computation of Kalman gain 

1])[][][][(][][][ −+−−= nRnTHnPnHTnHnPnK    (23) 
 
Step 3: Updating the estimation with measurement ][nX  

])[ˆ][][]([][ˆ][ˆ nSnHnXnKnSnS −−+−=                  (24) 
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Step 4: Computation of error covariance for updated estimate 
][])[][(][ nPnHnKInP −−=                                     (25) 

 
Step 5: Updating the state transition matrix 
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where coefficients 1na , 2na , and 3na  are computed 

by fitting a three order time-varying Auto-Regressive 
(AR) model [10]. 
 
Step 6: Prediction 

][ˆ][]1[ˆ nSnAnS =+−                                                  (27) 

][][][][]1[ nQnTAnPnAnP +=+−                            (28) 
 
Step 7: Iteration 

Increment time n  by one unit and go back to step 2. 
 

In Eq. (23) and Eq. (28), ][nR  and ][nQ  are 
obtained as: 
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Equations (23)-(28) are used to perform Kalman 
filtering. A time series of N  sample is provided. Then 
the coefficients of AR model are computed. AR is a 
well-known model used in discrete-time stochastic 
processes. The model update equations automatically 
provide one step prediction. The model updating 
continues for each prediction.  

If the flare detection module declares the presence of 
a flare, the KF module estimates tracking error signal. 
The CCM tracking module will function until all flares 
exit the FOV. After exit of all flares from FOV, the 
IRCCM method turns off CCM and returns to normal 
tracking. Fig. 6 describes the proposed IRCCM method 
using KF. 
 
6 Experimental Results 

Performance of the proposed IRCCM methods was 
assessed with experiments on IR reticle seeker based on 
a DSP processor. Fig. 7 shows jamming detection 
system output. In this figure, Ch1 and Ch2 present 
information signal and jamming detection system 
output, respectively. As shown in Fig. 7, output of 
jamming detection system become from +15V to -15V, 
after jamming occurrence. 
 

 
Fig. 6 Proposed IRCCM method description using KF 
 
 

 
Fig. 7 Output of detection system, before and after jamming 
occurrence (Ch1: Information signal and Ch2: Detection 
system output). 

 
Figs. 8, 9, and 10 show proposed IRCCM methods 

outputs using NN, FS, and KF, respectively. As shown 
in these figures, the proposed IRCCM methods can 
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properly estimate tracking error signal after jamming 
occurrence. 

Fig. 11 shows a sample from running of developed 
IRCCM simulator program by paper author. 

Table1 compares performance of the proposed 
IRCCM methods. As shown in this table, FS method is 
more accurate than other methods. 
 
Table 1 Successful percentage results of proposed IRCCM 
methods 

IRCCM 
Method 

Present 
Algorithm 

NN KF FS 

Successful 
Percentage 

39.6 54.5 62.5 83.3 

 
 

 
Fig. 8 Outputs of IRCCM method using NN (Ch1: NN output, 
Ch2: Tracking error signal, Ch3: Information signal, and Ch4: 
Detection system output). 
 
 

 
Fig. 9 Outputs of IRCCM method using FS (Ch1: Tracking 
error signal, Ch2: Detection system output, Ch3: Information 
signal, and Ch4: FS output) 

 
Fig. 10 Outputs of IRCCM method using KF (Ch1: 
Information signal, Ch2: KF output, and Ch3: Detection 
system output) 

 

 
Fig. 11 A sample from running of developed IRCCM 
simulator program 
 
7 Conclusions 

In a target tracking system, an IRCCM algorithm is 
required for target efficient tracking under IRCM such 
as IR flares. The function of active IR jamming is to 
cause the seeker to miss its intended target by 
disturbing the seeker tracking process. The active 
IRCM acts in such a way as to cause either a 
complete loss of target tracking or to degrade target 
tracking in such a manner that the guidance of the 
seeker is affected adversely. This paper has presented 
design and implementation of three new IRCCM 
efficient methods using NN, FS, and KF. An 
experimental test setup was designed and implemented 
for performance evaluation of the proposed methods. 
The methods validity was verified with experiments on 
IR seeker reticle based on a DSP processor. The 
practical results emphasized that the proposed 
algorithms were highly effective and could reduce the 
jamming effects. The experimental results obtained 
strongly supported the potential of the method using FS 
to eliminate the IRCM effect 83%. 
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