
 

Iranian Journal of Electrical & Electronic Engineering, Vol. 3, Nos. 1 & 2, Jan. 2007 1 

Impact of Participants’ Market Power and Transmission 

Constraints on GenCos’ Nash Equilibrium Point 

 
 
A. Badri*, S. Jadid* and M. Parsa-Moghaddam** 
 
 
 

Abstract: Unlike perfect competitive markets, in oligopoly electricity markets due to 

strategic producers and transmission constraints GenCos may increase their own profit 

through strategic biddings. This paper investigates the problem of developing optimal 

bidding strategies of GenCos considering participants’ market power and transmission 

constraints. The problem is modeled as a bi-level optimization that at the first level each 

GenCo maximizes its payoff through strategic bidding and at the second level, in order to 

consider transmission constraints a system dispatch is accomplished through an OPF 

problem. The AC power flow model is used for proposed OPF. Here it is assumed that each 

GenCo uses linear supply function model for its bidding and has information about initial 

bidding of other competitors. The impact of optimal biddings on market characteristics as 

well as GenCos’ payoffs are investigated and compared with perfect competitive markets 

where all the participants bid with their marginal costs. Furthermore, effects of exercising 

market power due to transmission constraints as well as different biddings of strategic 

generators on GenCos’ optimal bidding strategies are presented. Finally IEEE-30 bus test 

system is used for case study to demonstrate simulation results. 
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1 Introduction

1
 

In deregulated electricity markets GenCos are facing a 

new established problem entitled, optimal bidding 

strategy, to benefit more from bidding to the centralized 

spot market. All researches carried out in this area can 

be divided in two main categories, one those employing 

game theory for bidding strategy and the rest which use 

stochastic methodologies. The first group uses game 

theory to reach the Nash equilibrium for GenCos. There 

are two types of games regarding GenCos’ policy in 

their bidding strategies, non-cooperative and 

cooperative games. In [1] a non-cooperative market is 

modeled and a Cournot game is solved to simulate 

oligopoly market equilibrium. A non-cooperative game 

with incomplete information is employed in [2] that 

uses discrete bids for bidding strategies, however no 

constraint is taken into account. A transmission 

constrained bidding strategy with incomplete 

information is conducted in [3, 4] that uses bi-level 

optimization with DC optimal power flow. In [5] a 
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model is presented for bidding strategies with 

incomplete information in which each supplier bids part 

of its energy and self schedules the rest. The model 

considers a full competitive market that is unrealistic. In 

[6] a stochastic optimization model is used to develop 

optimal bidding strategies of GenCos, considering 

transmission congestion, however participants’ market 

power is not taken into account. Conejo and et al 

presented a framework to obtain bidding strategy of 

price taker producers by estimating probability density 

function of market clearing price, regardless of impact 

of network constraints [7]. Fuzzy-c-mean and artificial 

neural networks are employed to develop bidding 

strategies of GenCos in a perfect competition market 

without network considerations [8]. In [9] the problem 

of building optimally coordinated bidding strategies for 

competitive suppliers in energy and spinning reserve 

markets is addressed. An imperfect market with uniform 

price is considered in [9] that transmission network is 

not taken into account. Finally a detailed literature 

review of bidding strategies in electricity market is 

presented in [10]. 

In this paper the problem of developing optimal bidding 

strategies of GenCos in an imperfect competition, 

oligopoly electricity market is presented that GenCos’ 

market power and transmission constraints are taken 

into consideration. The linear supply function model is 
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considered for bidding strategy of proposed market that 

enables suppliers to bid simultaneously both their prices 

and quantities as well. The problem is formulated as a 

two-level optimization in which first level maximizes 

GenCos’ payoff and second level deals with market 

clearing from ISO point of view that considers ancillary 

services such as reactive power, system voltage as well. 

The Primal Dual Interior Point Method (PDIPM) is 

applied for solving market clearing OPF. Finally 

GenCos’ optimal bidding strategies are derived based 

on OPF sensitivity function to reach the Nash 

equilibrium. 

It is assumed that there is a complete information 

market and an AC power flow model is used for 

proposed OPF. The impact of exercising market power 

due to transmission constraints as well as biddings of 

strategic generators is investigated and compared with 

the perfect competitive markets where all the 

participants bid with their marginal costs.  

The paper is organized as follows: The formulation of 

proposed OPF and bidding strategy problems are given 

in Section 2 and the solution strategy is presented in 

Section 3. Section 4 illustrates numerical results using 

IEEE-30 bus test system and finally Section 5 provides 

the conclusions. 

 

2 Formulation 

Assuming that 
i i i

a ,b ,c  are marginal cost coefficients of 

generator i, operation cost function of this unit will be 

as Eq. (1): 

 

2

gi i gi i gi i
C a .P b .P c= + +  (1) 

 

In an oligopoly market with  imperfect competition each 

generator is capable to bid not necessarily with its 

marginal cost. In this case suppose that generator i bids 

as: 

 

2

gi i gi i gi i
C k .P b .P c= + +  (2) 

 

where 
i

k  is the bidding multiplier (
i i

k a≥ ) that in a 

special case would be optimal bidding strategy of unit 

i . Assuming there is complete information and each 

GenCo has information about initial biddings offered by 

other competitors, the problem formulation is divided 

into two sub-problems dealing with system dispatch and 

GenCos optimal biddings as follows. 

 

2.1  System Dispatch Problem 

For an optimal bidding, GenCos should consider 

transmission constraints while bidding to the market. 

For this purpose each GenCo, knowing biddings of 

other competitors, should solve a dispatch problem 

using OPF. Considering Eq. (2) the OPF problem can be 

formulated as Eq. (3) where the objective function is 

minimizing the system cost and all transmission 

constraints are taken into account. 

 

m
2

i gi i gi i

i 1

Min k .P b .P c
=

+ +∑  

n

gi di i j ij i j ij

j 1

P P VV Y cos( )θ θ α
=

− = − −∑  

n

gi di i j ij i j ij

j 1

Q Q VV Y sin( )θ θ α
=

− = − −∑  

gi min gi gi max
P P P≤ ≤  

gi min gi gi max
Q Q Q≤ ≤  

i min i i max
V V V≤ ≤  

lim in li lim ax
P P P≤ ≤  

(3) 

 

where 

gi
P ,

gi
Q : Active and reactive powers of unit i 

di
P ,

di
Q : Active and reactive power consumption of 

consumer i 

li
P : Power flowing from line i 

m,n : Number of generators and buses 

ij
α : Angle of ijth element of admittance matrix 

ij
Y : Magnitude of ijth element of admittance  matrix 

i
V ,

i
θ : Voltage magnitude and angle of bus i 

 

2.2  Optimal Bidding Strategy 

Besides satisfying network constraints, GenCos are 

looking for optimal biddings in order to maximize their 

payoff as shown in Eq. (4) 

 

in

2

i j gj j gj j gj j

j 1

Max R [ .P (a .P b .P c )]λ
=

= − + + =∑  

T T T

Gencoi Gencoi Gencoi i Gencoi i Gencoi i
.P (P .A .P B .P C )λ − + +  

(4) 

 

In which: 

j
:λ Nodal price of bus j 

Gencoi
λ : Vector of GenCo i nodal prices 

Gencoi
P : Vector of GenCo i generation outputs 

i i i
A ,B ,C : Vectors of GenCo i operation cost 

coefficients 

i
n : Number of generators located in GenCo i 

 

Combining Eqs. (3) and (4) complete optimal bidding 

problem is derived that satisfies transmission 

constraints. 

 

i
Max R  

Subject to : OPF problem  
(5) 
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In above bidding problem, it is assumed that generators 

just bid with their 
i

a  coefficient, while 
i

b  and 
i
c  are 

constant. Furthermore as it is clear generator’s bidding 

coefficient 
i

k  does not appear in their maximum payoff 

function, although 
i

R  is an implicit function of 
i

k , 

through 
i
λ  and

gi
P , where

i
λ and 

gi
P  for each generator 

are determined by the OPF. 

 

3 Solution Strategy 

In order to solve this problem, at first OPF sub problem 

should be solved to determine variables required in 

main optimality objective function. The bidding model 

presented in this framework is based on Interior Point 

OPF model for which a nonlinear PDIPM [11] is 

directly applied to OPF. The general procedure of an 

IPM method, which is employed in an OPF model, is as 

presented in Eq. (6) 

 

l u

Min f (t)

Subject to : p(t) 0

q q(t) q

=

≤ ≤

 (6) 

 

One of the main advantages of IPM is its capability to 

deal with inequality constraints. According to PDIPM 

optimization method, slack variables (
l u
s ,s ) are used to 

transform inequality constraints into equality constraints 

in which slack variables are incorporated by barrier 

parameter (µ). Therefore lagrangian function can be 

formed as: 

 

T T

l l l

ne ne
T

u u u li ui

i 1 i 1

Min L f (t) p(t) (q(t) s q )

(q(t) s q ) ( ln s ln s )
= =

= − λ + γ − −

+γ + − − µ +∑ ∑
 

l
s ≥ 0, 

u
s ≥ 0, 

l
γ <0, 

u
γ >0, µ>0 

(7) 

 

Here : 

t : Set of primal variables, containing all equality and 

inequality constraint Variables 
gi i i

(P ,V , )θ  

λ: Vector of lagrangian coefficients 

l
γ ,

u
γ : Vector of dual variables 

ne : Number of inequality constraints 

 

Applying first order optimally condition and using 

Newton method, reduced form of Karush-Kahn-Tucker 

(KKT) equations will be as follows [11]: 

 

A. T R∆ =  (8) 

In which: 

 

T

1
H (t, ) J (t)

A
J(t) 0

λ −
=  
 

 (9) 

TT [ t ]λ∆ = ∆ ∆  (10) 

TR [r p(t)]= −  (11) 

T

1 1

1 u u l l

q q
H (t, ) ([s ] [ ] [s ] [ ])

t t

H(t, )

λ γ γ

λ

− −∂ ∂
= −

∂ ∂
+

 (12) 

T

T 1 1

u l

f (t) q
r J (t) ([s ] [s ] ) e

t t
λ µ− −∂ ∂

= − + −
∂ ∂

 (13) 

 

In above equations H(t, )λ is Hessian matrix of 

lagrangian function [11] and e  is unity vector and J  is 
Jacobian matrix. In order to obtain optimal bidding 

strategies, applying first-order derivative with respect to 

K  to Eq. (8) (due to t 0∆ = at optimal solution) we 

have: 

1T R
A .

K K

−∂ ∂
=

∂ ∂
 (14) 

 

where: 

gi i i i

i i i i

P VT
[......, , , , ,.......]

K k k k k

θ λ∂ ∂ ∂ ∂∂
=

∂ ∂ ∂ ∂ ∂
 (15) 

 

where K  is vector of bidding strategies. 

Similarly applying second-order derivative to Eq. (8) 

and considering the same constraints we have: 

 

2

1

2

T A T
2.A . .

K K K

−∂ ∂ ∂
=

∂ ∂ ∂
 (16) 

 

Similarly it is second order derivatives of primal and 

dual variables as shown in Eq. (17). 

2 2 2 22

gi i i i

2 2 2 2 2

i i i i

P VT
[......, , , , ,......]

K k k k k

θ λ∂ ∂ ∂ ∂∂
=

∂ ∂ ∂ ∂ ∂
 (17) 

 

In order to determine and update bidding coefficients of 

generators, applying first-order optimally conditions to 

Eq. (4) and using Newton method [12] we have: 

 

i old i old

2

i i

K i K2

i i

R R
. K

K K

∂ ∂
∆ = −

∂ ∂
 (18) 

iold

i old

i

K

i

i new i old 2

i

K2

i

R
( )
K

K K
R

( )
K

∂
∂

= −
∂
∂

 (19) 
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where 
i

K  is vector of bidding strategies of GenCo i. 

First-order and second-order derivatives of 
i

R  with 

respect to 
i

K  are:  

 

T T T G enco ii

G en co i i G enco i i

i i

TG enco i

G en co i

i

PR
( B 2 .P .A ).

K K

[ ] .P
K

λ

λ

∂∂
= − −

∂ ∂

∂
+

∂

 (20) 

2

T TGencoi Gencoi Gencoii

i2

i i i i

2

T T T Gencoi

Gencoi i i Gencoi 2

i

2

TGencoi

Gencoi2

i

P PR
2([ ] [ ] .A ).

K K K K

P
( B 2.A .P ).

K

[ ] .P
K

λ

λ

λ

∂ ∂ ∂∂
= −

∂ ∂ ∂ ∂

∂
+ − − +

∂

∂

∂

 (21) 

 

In which first order and second order derivatives of 

Gencoi
P  and 

Gencoi
λ  in Eqs. (20) and (21) are obtained 

through Eq. (15) and (17), respectively. Deriving 

expressions in (20) and (21), optimal bidding strategy of 

each generator is determined and updated through Eq. 

(19). If we take GenCo i into account, assuming other 

generators’ bidding strategies are known, a game 

process is accomplished to update corresponding 

biddings. This process can be repeated for all other 

GenCos. Each GenCo can update its bidding by initial 

bidding strategies of other competitors. The process 

stops when none of units would like to change its bids.  

Note that in a power system with transmission 

constraints taken into account, game may result in Nash 

equilibrium or multiple [13] or no equilibrium at all 

(due to market power). 

 

4 Simulation Results 

An IEEE-30 bus test system is employed to illustrate 

simulation result. It is assumed that there are six 

GenCos each containing one unit, competing with each 

other. The information on generators and loads are 

shown in Tables 1 and 2, respectively. Transmission 

network is given in [14]. 

 
Table 1 Generators’ data. 

Generator 

buses 
a  b  c  

i max
P  

i min
P  

1 0.02 2 0 180 0 

2 0.175 1.75 0 180 0 

3 0.625 1 0 150 0 

4 0.0834 3.25 0 150 0 

5 0.25 3 0 130 0 

6 0.25 3 0 140 0 

 

Table 2 Load data. 

Bus d
P (Mw)  Bus d

P (Mw)  

2 35.7 18 3.2 

5 3.2 19 9.5 

7 22.8 20 2.2 

8 30 21 17.5 

10 5.8 22 2.4 

12 11.2 24 8.7 

14 6.2 26 3.5 

15 8.2 27 7.6 

16 3.5 29 2.4 

17 9 30 10.6 

 

In order to show the accuracy of proposed bidding 

strategy, Fig.1 illustrates initial biddings and optimal 

bidding strategies of each generator, assuming other 

competing generators bid with their initial bidding 

coefficients. As it is appear all generators have 

increased their initial biddings to reach the 

corresponding Nash equilibrium point. Here it is 

assumed that each GenCo obtains its optimal bidding, 

given that the others bid at their initial costs. This 

process can be repeated if each GenCo changes its 

bidding. Consequently, Fig. 2 shows corresponding 

payoffs of existing GenCos in two mentioned cases, 

respectively. Comparing different payoffs in Fig. 2, it is 

clear that in Nash equilibrium point each GenCo has 

increased its payoff in comparison with marginal 

biddings. It is due to existing fix loads which must be 

satisfied in all period of times. Therefore, bidding with 

the prices higher than true initial costs results in higher 

prices and consequently increases in GenCos’ 

corresponding payoffs. 

In game theory the players are mutually interdependent 

and the situation of each player directly affects the final 

decision of other players. Nevertheless, a non-

cooperative game can be static game or dynamic game. 

In a static game the players make their moves in 

isolation, without knowing what other players have 

done. However, in a dynamic game that is more realistic 

and more accurate the players make their own decisions 

based on the strategies given by others rivals. A 

dynamic game results in Nash equilibrium that is the 

best (most profitable) strategy for all players. Nash 

equilibrium is interpreted as the optimal response of 

each player to a given set of strategies chosen by other 

players. Therefore, knowing (or estimating) other rivals’ 

strategies is necessary to obtain Nash equilibrium point. 

In our study in order to show the impact of initial values 

on optimal bidding strategies, Table 3, illustrates 

GenCo1’s optimal bidding strategies and corresponding 

payoffs when this GenCo bids with different estimation 

of other rivals’ strategies. As shown, maximum profit is 

obtained when GenCo 1 has the correct estimation of its 

rivals’ (true) marginal costs. 
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Fig. 1 Comparison of GenCos’ initial and optimal bidding strategies. 
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Fig. 2 Comparison of GenCos’ initial and optimal payoffs. 

 

 

Table 3 Gencos 1’ payoffs with respect to different estimation of rivals’ behaviors. 

Case 
Estimation of rivals’ 

strategies 
Optimal bidding strategy of GenCo1 GenCo Payoff 

1 0.76*(True marginal costs) 0.0502 564.37 

2 0.83*(True marginal costs) 0.0524 568.83 

3 0.91*( True marginal costs) 0.0565 573.12 

4 1.0*( True marginal costs) 0.0586 573.56 

5 1.10*( True marginal costs) 0.0615 572.32 

6 1.20*( True marginal costs) 0.0650 568.59 

7 1.30*(True marginal costs) 0.0685 562.79 
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Note that with a given set of strategies (proposed by the 

rivals) the optimal bidding strategy of each GenCo is the 

same, regardless of its initial values. In the other words, 

the optimal bidding strategy of each player depends on 

the others initial bids. However, it is independent of its 

initial bidding values. Table 4 illustrates generators’ 

nodal prices as well as corresponding payoffs when, 

simultaneously all GenCos bid with their initial and 

optimal bidding coefficients. As shown the nodal prices 

of all participants have gone up due to their increase in 

initial biddings. Furthermore as expected from optimal 

bidding strategy procedure, all GenCos’ payoffs have 

been increased due to their market power to change their 

biddings and market prices as well. Consequently, 

generators’ corresponding output powers in these two 

above situations are depicted in Fig. 3. As shown in this 

figure, outputs of generators 1 and 4 are reduced. This is 

because they are initially cheap units and bidding with 

prices much higher than their marginal costs causes 

reduction in their output powers, however outputs of 

other generators are increased, due to increasing rates of 

corresponding bidding coefficients. 

 
Table 4 Generators’ nodal prices and payoffs. 

Before Nash 

equilibrium point 

After Nash equilibrium 

point GenCo 

iλ  Payoff iλ  Payoff 

1 5.957 195.74 12.784 822.81 

2 7.925 54.471 13.131 183.57 

3 10.392 35.28 13.758 64.662 

4 9.867 131.23 13.351 222.35 

5 10.309 53.423 13.52 105.45 

6 10.423 55.096 13.547 105.8 
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Fig. 3 Comparison of GenCos’ outputs before and after Nash equilibrium when all bid strategically. 

 

 

In imperfect competitive markets such as oligopoly 

markets, each of the participants may be able to exercise 

its market power through optimal bids. In these cases, 

transmission constraints play an important role to form 

market characteristics and participants’ final payoffs. In 

another words, in spite of perfect competitive markets, 

in which all the participants must bid with their 

marginal costs, here each GenCo considering 

transmission characteristics is capable to bid higher than 

its marginal cost to benefit the market. In order to show 

the impact of GenCos optimal biddings, Table 5 

illustrates the comparison of GenCos’ output powers as 

well as their corresponding profits in two cases, with 

perfect competitive market and no transmission 

constraints and imperfect competitive market and 

transmission constraints, respectively.  As shown 

exercising market power in the imperfect competitive 

markets, results in higher nodal prices and higher 

respective profits as well. Furthermore, in comparison 

to Table 4 it is appear that, while GenCos bid with their 

initial (marginal) costs, transmission constraints may 

affect the participants’ final payoffs. 
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Table 5 Generation outputs, nodal prices and payoffs. 

Perfect competition with 

no transmission 

constraints 

Imperfect competition 

with transmission 

constraints GenCo 

iλ  giP  Payoff iλ  giP  Payoff 

1 7.261 131.6 346 12.784 91.99 822.81 

2 7.261 15.18 43.2 13.131 29.63 183.57 

3 7.261 5.01 15.7 13.758 9.36 64.662 

4 7.261 24.1 49 13.351 28.91 222.35 

5 7.261 8.52 18.3 13.520 16.47 105.45 

6 7.261 8.52 18.3 13.547 16.43 105.8 

 

As mentioned in an optimal bidding strategy, generators 

might bid either based on competitors’ initial biddings 

or their new updated bidding strategies. Table 6 shows 

optimal bidding strategies and corresponding payoffs of 

the generators in two different cases, that in the first 

case each generator updates its bidding according to 

initial bidding strategies of other competitors, while in 

the second case each generator uses new updated 

bidding strategies of other competitors to achieve to its 

optimal bidding strategy. As illustrated according to 

type of strategy that will be selected, optimal bidding 

strategies as well as corresponding payoffs are different. 

However in the second case GenCos’ payoffs are 

decreased due to response to new updated bidding 

strategies of other competitors. 

The impact of transmission capacity constraints on 

optimal bidding strategy and other specifications of 

GenCos is shown in Table 7. To clarify the impact of 

network constraints, here it is assumed that load in each 

bus is stressed with 1.33 times its initial value (shown in 

Table 2). In this case transmission lines 4, 30 and 33 are 

congested. According to Table 7 when transmission 

constraints are taken into account nodal prices are much 

higher than those in an unconstrained system. 

Furthermore as shown GenCos 2-6 will benefit more 

because of exercising their market power due to 

transmission constraints, while GenCo1 will earn less 

because of its lower generation in this case. 

 
Table 6 Optimal bidding strategies and corresponding payoffs 

in two cases. 

Case1 Case2 
Genco 

Optimal bidding Payoff Optimal bidding Payoff 

1 0.05861 822.81 0.05857 739.73 

2 0.19207 183.57 0.20466 160.49 

3 0.68130 64.662 0.65840 56.941 

4 0.17468 222.35 0.12572 225.07 

5 0.31926 105.45 0.29295 92.113 

6 0.32098 105.8 0.28656 93.396 

 

Table 7 Gencos’ characteristics with transmission constraints 

and load stress. 

Unconstrained transmission Constrained transmission 

i
k  

i
λ  Payoff 

i
k  

i
λ  Payoff 

0.05908 14.869 1164.3 0.083725 16.416 1092.8 

0.19061 15.237 258.09 0.20279 23.257 648.37 

0.64563 16.024 90.195 0.77277 32.123 373.29 

0.10759 15.098 399.51 0.18924 24.988 973.45 

0.27539 15.688 157.04 0.4565 25.736 411.16 

0.26912 15.84 160.17 1.0304 34.65 427.13 

 

Unlike, perfect competition markets that all units are 

urged to bid with maximum capacity at their marginal 

costs, in an imperfect oligopoly market there is no 

guarantee that GenCos bid with their maximum 

capacity. In other words, in this markets GenCos 

(specially those containing cheap units) might exercise 

market power and bid not necessarily with their 

maximum capacity, in order to cause nodal prices go up 

and increase their payoff. To illustrate the impact of 

binding maximum capacity on optimal bidding 

strategies of GenCos, Table 8 shows GenCos’ 

characteristics when GenCo1 fixes its maximum power 

to 80 MW. Comparing Tables 4 and 8 it is clear that 

since generator 1 is a cheap unit, exercising market 

power for not bidding its full capacity in the market, 

causes increases in nodal prices. The reason is that since 

GenCo 1 has limited its maximum outputs, nodal prices 

are determined by some other units that are more 

expensive and accordingly, corresponding profit is 

increased. Furthermore, it appears that other competitors 

will benefit from exercising market power via GenCo1. 

Considering generation output powers, we see the 

output of generator 1 is bounded to 80 MW while 

generation outputs of units 3-6 are increased to meet the 

load demand. 

To illustrate the impact of fixing GenCos’ maximum 

capacity on optimal bidding strategies and Nash 

equilibrium, Fig. 4 shows GenCos initial biddings with 

respect to their optimal bidding strategies when GenCo1 

withholds its generation on 80 MW.  

 
Table 8 Gencos’ characteristics when generator 1 fixes its 

generation output. 

Genco ik iλ  giP  Payoff 

1 0.02  14.474 80 869.9 

2 0.2367 14.733 26.82 222.35 

3 0.6853 15.264 10.57 80.933 

4 0.1586 14.708 36.44 306.79 

5 0.3025 14.920 19.21 136.73 

6 0.3084 14.028 19.34 139.11 
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Fig. 4 Comparison of GenCos’ bidding strategies when GenCo 1 fixes its generation with the respective true marginal costs. 

 

 

In this case, GenCo 1 bids with its marginal cost, 

however all other GenCos have increased their initial 

bids to reach the higher payoffs. It should be noted that 

here the game results in multiple Nash equilibrium for 

GenCo 1 (0.02
1

k≤ ≤ 0.042) that all provide the same 

(maximum) profit for it 

 

5 Conclusion 

In this paper optimal bidding strategy of GenCos is 

modeled that considers participants’ market power and 

transmission constraints. Supply function equilibrium is 

employed to model GenCos’ bidding strategies in an 

oligopolistic market. The problem is modeled with a bi-

level optimization that uses PDIPM to solve. Main 

advantages of IPM are found as its fast convergence and 

capabilities to reduce problem scale and model 

inequality constraints. It is shown that due to optimal 

biddings, system nodal prices as well as GenCos’ profits 

are increased in comparison to perfect competitive 

market that all the suppliers bid with their marginal 

costs. Optimal bidding strategies may be implemented 

via two manners, using competitors’ initial cost 

functions or their new updated cost functions, 

respectively. Impacts of system characteristics and 

GenCos’ payoffs in each case is obtained and compared. 

It is illustrated that exercising market power due to 

transmission constraints as well as generation bindings, 

causes increases in nodal prices, that in former case 

some participants are able to benefit from deduced high 

nodal prices, due to their characteristics and strategic 

locations, while in latter case all participants may be 

able to benefit from generation binding of some cheap 

and strategic units.  
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