
 
 
 

Iranian Journal of Electrical and Electronic Engineering, Vol. 18, No. 4, 2022                      

 

 

 

 

1 

Iranian Journal of Electrical and Electronic Engineering 04 (2022) 2514 

Microgrid Special Issue 2022: Operation, Control, and Applications 

 

Load Profile Flattening Considering EV’s Initial and Final 

SoC and Arrival and Departure Times 

V. Bagheri*, A. F. Ehyaei*(C.A.), and M. Haeri** 

 Abstract: In distribution networks, failure to smooth the load curve leads to voltage 

drop and power quality loss. In this regard, electric vehicle batteries can be used to 

smooth the load curve. However, to persuade vehicle owners to share their vehicle 

batteries, we must also consider the owners' profits. A challenging problem is that 

existing methods do not take into account the vehicle owner demands including 

initial and final states of charge and arrival and departure times of vehicles. Another 

problem is that battery capacity of each vehicle varies depending on the type of 

vehicle; which leads to uncertainties in the charging and discharging dynamics of 

batteries. In this paper, we propose a modified mean-field method so that the load 

curve is smoothed, vehicle owner demands are met, and different capacities of 

electric vehicle batteries are considered. The simulation results show the 

effectiveness of the proposed method. 

 Keywords: Load profile, Wind turbine, Photovoltaic, State of Charge, Electric 

vehicle. 
 

1   Introduction 

N recent years, due to the growing interest 

in renewable energy resources, a lot of 

small wind turbines (WTs) and photovoltaics (PVs) 

have been manufactured for installation in homes.  

Meanwhile, electric vehicles (EVs) have been 

produced extensively due to their high efficiency, 

lower cost, and less fuel pollution. However, failure 

to smooth the charge of electric vehicle batteries and 

the output power of wind turbines and photovoltaics 

causes voltage peak, power quality loss, and voltage 

deviation in the network.  
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As a result, different methods are used to smooth 

the load curve; the most common methods [1] are 

peak shaving, valley filling, and load shifting (Fig. 

1). 

The peak shaving method is one of the most 

common load management methods that reduce the 

peak demand. The valley filling method aims to 

reduce the level of load difference between peak 

load and valley load. The shifting load method is 

mostly used in demand-side management. This 

method is the most effective load management 

method that shifts the load from peak hours to off-

peak hours by combining valley filling and peak 

shaving methods [2]. 

Time-varying load has been used in demand-side 

management in [3]. Using peak shaving and shifting 

load methods helps the distribution network to 

reduce peak demand and electricity energy billing 

costs. A diesel generator, a wind turbine, 

consumption load, dump load, and a battery are used 

in [4]. Diesel generator and wind control enable the 

battery to smooth wind and load variation; so that the 

power quality of the islanded system is improved. 

I 
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Fig. 1 A variety of methods of load curve flattening. 

 

The battery is also used for frequency regulation 

and peak shaving. Peak load shaving opportunities 

in district heating systems have been analyzed in [5]. 

It also examines the effect of variation in the heat 

demand of buildings or the installation of local 

storage systems on the total load. Battery storage 

potential has been used for peak shaving in low 

voltage distribution networks focusing on residential 

areas in [6]. For the effects of high penetration of 

renewable energy sources in the power system, 

battery storage has been used to peak load shaving 

and load curve smoothing in [7]. To reduce the stress 

on the power distribution network and increase the 

profits of PV owners, increase self-consumption and 

peak shaving of home photovoltaics using batteries 

and curtailment [8]. In [9] using batteries for peak 

cutting, the payback period shortens large industrial 

loads, and the effect of peak shaving on the return of 

investment and the aging of the battery is shown. An 

optimal peak shaving strategy is proposed for an 

energy storage system to reduce peak demand 

consumption in [10]. Also, a cost-savings analytical 

tool has been created for customers to choose the 

right size of energy storage for various tariff 

schemes. In [11], the load curve of the system 

consisting of diesel generators, PV farms, and 

batteries in island mode based on load forecasting 

smoothed and shaved the peak load curve. In [12], a 

battery is used simultaneously for optimization of 

peak shaving and frequency regulation, including 

battery degradation, operating constraints and load 

uncertainties, and regulation signals. 

An energy management system has been 

proposed to consider energy consumption and 

production simultaneously to reduce energy costs in 

[13]. The scheduling method in a typical home 

includes various home appliances, a small wind 

turbine, a PV panel, and a battery in 24 hours. In 

[14], the effects of electric vehicles for peak shaving 

and valley filling, the effects of electric vehicles on 

the grid (V2G), and the effects of the grid on electric 

vehicles (G2V) on dynamic economic/emission 

dispatch have been investigated. The uncoordinated 

charging of many electric vehicles increases the peak 

load during rush hours and challenges the stability 

and security of the power grid [15]. If the number of 

electric vehicles involved is more than one million; 

a highly efficient valley-filling strategy is used, 

which has two indices: capacity margin index and 

charging priority index. In [16], peak shaving and 

valley filling methods in the power consumption 

profile have been used to schedule the charging and 

discharging of electric vehicles in the parking lots. 

In this method, the profile of power consumption 

during the day is smoothed, and as a result, the cost 

of electricity is reduced; this reduction is very 

important for electricity consumers. The 

uncoordinated charging load in many electric 

vehicles increases the gap between peak load and 

valley load. Appropriate battery charging pricing 

mechanisms have been used to reduce the negative 

effects of uncoordinated battery charging, assist the 

power grid in valley load, and increase social welfare 

in [17]. The demand response is done using the 

Stackelberg game to balance supply and demand and 

smooth the aggregated load [18]. The proposed 

method has met consumers' demand, including peak 

demand smoothing valley filling and reducing the 

mismatch between supply and demand. 

A distributed algorithm for sparse load shifting is 

proposed to reduce energy costs, daily peak demand, 
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and customer discomfort and solve the problem of 

scheduling residential smart appliances [19]. A new 

algorithm for charging and discharging batteries for 

peak load shaving, power curve smoothing, and 

voltage regulation of a distribution transformer using 

load forecasting has been proposed in [20]. Time-of-

use (TOU) energy cost management using batteries 

is provided to reduce electricity bills [21]. The 

application of TOU is economically useful when 

there is a large difference between the maximum and 

minimum electricity prices. In [22], the Internet of 

Things (IoT) is used for peak load shifting by end-

users in the market; users can charge and discharge 

energy storage facilities to reduce operating costs. 

The demand response presented in [23] manages 

the demand-side resources in real-time. In this 

method, due to supply fluctuations, electricity 

demand changes. If integrated with electricity 

markets, demand response can be used for load 

shifting and as an alternative to reserve control and 

balancing energy. The purpose of the strategy in [24] 

is to identify the connection status of each battery 

and the sequence priority between batteries. This 

strategy manages batteries through seven operating 

modes; which provide power exchange between 

batteries and the power grid, especially during rush 

hours, and load power variance minimizes to smooth 

the power demand curve and reduce the stress of the 

power grid. 

According to above studies, the cost functions 

related to different load management methods are 

based on minimizing the cost of electricity and 

maximizing the profit of the distribution network. 

However, if we want the customer to provide us with 

his car battery, we must also consider the customer's 

profit.  

The innovation of the present work is: 

A modified algorithm is presented to optimize 

the charge and discharge of batteries in load curve 

flattening problems with met customer 

requirements. 

To this end, the rest of the paper is organized as 

follows: Section 2 introduces the network, network 

components and the connection strategy of 

renewable energy resources, electric vehicles, and 

loads. In this section, to consider the profit of vehicle 

owners, four parameters of arrival & departure times 

and initial & final SoC are introduced. In section 3, 

the cost function and the optimization problem are 

defined and a new method based on mean-field 

algorithm is presented to smooth the load curve. In 

section 4, the amount of renewable energy 

production, cost function parameters, battery 

capacity of different vehicles and also vehicle 

demands are quantified and the simulation results are 

given. Finally, concluding remarks are provided in 

section 5.  

2   System Description 

Home customers fall into three categories (Fig. 

2). The first category only contains loads. The 

second category, in addition to the load, has a small 

wind turbine. The third category, in addition to the 

load, has photovoltaics as well. Customers get part 

of their power from renewable energy resources such 

as home-installed wind turbines or photovoltaics in 

the second and third categories. Electric vehicle 

batteries are connected to the distribution network, 

either in the parking lot or at home. When a battery 

is connected to the grid, it declares four parameters: 

arrival time, departure time, initial SoC, and final 

SoC. The aggregator smooths the load curve 

considering the output power of the wind turbine, the 

output power of the photovoltaic, and the required 

power for the home load and taking into account of 

the connected batteries declaration. 

 

 

Fig. 2 Types of connection of electric vehicles to the 

distribution network. 

Total home power consumption and total 

production capacity of renewable resources for the 

customer 𝑛 ∈ 𝑁 at 𝑡 ∈ 𝑇 are considered as 𝑝𝑛
𝐷,𝑡

 and 

𝑝𝑛
𝑆,𝑡

, respectively. As a result, the total 

uncontrollable power for each customer is 

considered as 𝑝𝑛
𝑈𝑛,𝑡 = 𝑝𝑛

𝐷,𝑡 − 𝑝𝑛
𝑆,𝑡

. Production 

capacity of renewable resources for customer 𝑛 ∈ 𝑁 

at 𝑡 ∈ 𝑇 is considered as 𝑝𝑛
𝑆,𝑡 = 𝑝𝑛

𝑃𝑉,𝑡 + 𝑝𝑛
𝑊𝑇,𝑡

. The 

previous days’ uncontrollable power curve is used as 

a power forecast for the following days. Then, the 

total customer power, including EV battery, is 

determined as follows: 

𝑝𝑛 = 𝑝𝑛
𝑈𝑛 + 𝛾𝑛(𝑞𝑛

𝐶 − 𝑞𝑛
𝐷),  (1) 
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𝛾𝑛 = {
1,     𝑡𝑎𝑟𝑟

𝑛 ≤ 𝑡 ≤ 𝑡𝑑𝑒𝑝
𝑛

0,                       𝑂. 𝑊
 

where variables are 𝑝𝑛
𝑈𝑛 = [𝑝𝑛

𝑈𝑛,1 ⋯ 𝑝𝑛
𝑈𝑛,𝑇]𝑇 , 

𝑝𝑛 = [𝑝𝑛
1 ⋯ 𝑝𝑛

𝑇]𝑇, 𝑞𝑛
𝐶 = [𝑞𝑛

𝐶,1 ⋯ 𝑞𝑛
𝐶,𝑇]

𝑇
, and 

𝑞𝑛
𝐷 = [𝑞𝑛

𝐷,1 ⋯ 𝑞𝑛
𝐷,𝑇]𝑇. 𝑞𝑛

𝐶,𝑡
 and 𝑞𝑛

𝐷,𝑡
 indicate the 

charge and discharge of the 𝑛th battery at 𝑡 ∈ 𝑇. 

Electric vehicles arrival and departure times are 

denoted by 𝑡𝑎𝑟𝑟
𝑛  and 𝑡𝑑𝑒𝑝

𝑛  respectively. 𝛾𝑛 is defined 

for the 𝑛th EV according to its arrival and departure 

times. 

We consider the dynamics of SoC as follows 

[25]: 

𝑠𝑛
𝑡 = 𝑠𝑛

𝑡−1 +
𝜇𝑛

𝜍𝑛

𝑞𝑛
𝐶,𝑡 −

𝜇𝑛
−1

𝜍𝑛

𝑞𝑛
𝐷,𝑡

 (2) 

𝜇𝑛 and 𝜍𝑛 is show charging efficiency and battery 

size, where the following constraints and 

initializations are in order. 

0 ≤ 𝑠𝑛
𝑡 ≤ 1, 0 ≤ 𝑞𝑛

𝐶,𝑡 ≤ 𝑞𝑛
𝐶,max

, 0 ≤ 𝑞𝑛
𝐷,𝑡 ≤ 𝑞𝑛

𝐷,max
, 

𝑠𝑛
𝑡0

𝑛

= 𝑆𝑜𝐶0
𝑛, 𝑡0

𝑛 = 𝑡𝑎𝑟𝑟
𝑛 , 𝑠𝑛

𝑡𝐹
𝑛

= 𝑆𝑜𝐶𝐹
𝑛, 𝑡𝐹

𝑛 = 𝑡𝑑𝑒𝑝
𝑛 . 

𝑠𝑛
𝑡  indicates the SoC of customer 𝑛 at time 𝑡 and 

𝑆𝑜𝐶0
𝑛 and 𝑆𝑜𝐶𝐹

𝑛 represent initial and final values of 

the SoC. 

Note that for 𝛾𝑛 = 0, the amount of charge and 

discharge of the battery is assumed to be zero, and 

we solve the defined optimization problem without 

considering all the constraints in (2). However, if 

𝛾𝑛 = 1, then all constraints in (2) are considered. 

3 Optimization Problem and the Proposed 

Method of Load Flattening 

Now, the price function is considered as follows 

[25]: 

𝑇𝑛
𝑡(𝑝𝑛

𝑡 , �̅�𝑡) = 𝑎𝑒,𝑛
𝑡 𝑝𝑛

𝑡 + 𝑏𝑒
𝑡�̅�𝑡 + 𝑐𝑒

𝑡 (3) 

where 𝑎𝑒,𝑛
𝑡 ≥ 0 and 𝑏𝑒

𝑡 > 0, and �̅� is defined as 

�̅� = ∑
1

𝑁
𝑛∈𝑁

𝑝𝑛 (4) 

where �̅� is �̅� = [�̅�1, ⋯ , �̅�𝑇]𝑇. 𝑎𝑒,𝑛
𝑡 , 𝑏𝑒

𝑡, and 𝑐𝑒
𝑡 

are predetermined. The price function in (3) is 

effective in moving the load (due to the dependence 

of the price function on �̅�𝑡) and reducing the load 

(due to the dependence of the price function on 𝑝𝑛
𝑡 ). 

According to the price function for customer 𝑛, the 

daily bill is calculated as follows [25]: 

𝐸𝑛
𝑡 (𝑝𝑛

𝑡 , �̅�𝑡) = 𝑇𝑛
𝑡(𝑝𝑛

𝑡 , �̅�𝑡)𝑝𝑛
𝑡  (5) 

Term 𝑎𝑒,𝑛
𝑡 𝑝𝑛

𝑡  in the price function converts the 

electricity bill into a quadratic form, encouraging 

customers to reduce consumption. Term 𝑏𝑒
𝑡�̅�𝑡 also 

encourages customers not to consume during peak 

rush hours, and it helps to smooth the load curve. 

Term 𝑐𝑒
𝑡 is for changing electricity tariffs at different 

times of the day by the distribution network. The 

cost of degradation of electric vehicle batteries is 

considered as follows [25]: 

𝐻𝑛(𝑞𝑛
𝑡 ) = 𝑎ℎ,𝑛 ((𝑞𝑛

𝐶,𝑡)
2

+ (𝑞𝑛
𝐷,𝑡)

2
)

+ 𝑏ℎ(𝑞𝑛
𝐶,𝑡 + 𝑞𝑛

𝐷,𝑡) 
(6) 

where 𝑞𝑛
𝑡 = [𝑞𝑛

𝐶,𝑡 𝑞𝑛
𝐷,𝑡]

𝑇
. Therefore, the 𝑛th 

customer cost function is defined as: 

𝑈𝑛(𝑞𝑛 , �̅�) = ∑(𝐸𝑛
𝑡 (𝑝𝑛

𝑡 , �̅�𝑡) + 𝛾𝑛𝐻𝑛(𝑞𝑛
𝑡 ))

𝑡∈𝑇

 (7) 

here 𝑞𝑛 is 𝑞𝑛 = [𝑞𝑛
𝐶 𝑞𝑛

𝐷]𝑇. The main task for 

each customer is to obtain the optimal value of 𝑞𝑛 to 

minimize the cost function in (7). 

According to (7), each customer’s strategy 

affects other customers through �̅�𝑡. Also, since each 

player in the game does not have information about 

the strategy of other players, this game is not 

complete with information. However, since �̅� is a 

common term in the cost function of all players, 

players do not need to know the optimal strategy of 

other players. As a result, a modified decentralized 

mean-field optimization is proposed to solve the 

problem. In this method, information does not 

exchange among the players, but is only 

communicated between the players and the 

distribution network. That is, the distribution 

network calculates the optimal strategy for the 

players and sends the estimated amount to all of 

them. In other words, aggregator calculates the mean 

field term and estimates the next level for this term. 

Thus the common term �̅�, called the mean-field 

term, is estimated by 𝑧(𝑘), where 𝑘 is the step 

number of the algorithm. By employing 𝑧(𝑘) instead 

of �̅�, The optimization problem for the 𝑛th player is 

modified as follows [25]. 

𝑞𝑛
∗ (𝑧(𝑘)) = argmin

𝑞𝑛

𝑈𝑛(𝑞𝑛, 𝑧(𝑘)) (8) 

Using the Mann iteration algorithm [26], the 

update rule is defined as [25]: 

𝑧(𝑘 + 1) = (1 − 𝜆(𝑘))𝑧(𝑘) +

𝜆(𝑘)Λ(𝑧(𝑘)), Λ(𝑧(𝑘)) = ∑
1

𝑁
𝑝𝑛

∗ (𝑧(𝑘))𝑛∈𝑁  
(9) 

where ∑ 𝜆(𝑘)∞
𝑘=0 = ∞ and ∑ 𝜆(𝑘)2∞

𝑘=0 < ∞ and 

for every iteration 𝑘 we consider 𝑝𝑛
∗ (𝑧(𝑘)) = 𝑝𝑛

𝑈𝑛 +

𝛾𝑛 (𝑞𝑛
𝐶∗(𝑧(𝑘)) − 𝑞𝑛

𝐷∗(𝑧(𝑘))). 

The estimation and optimization process is 

described through the following algorithm.  



 
 
 

 
5 

 
 

V. Bagheri et al. Load Profile Flattening Considering EV’s Initial … 

 

Iranian Journal of Electrical and Electronic Engineering, Vol. 18, No. 4, 2022 

 

Fig. 3 Flowchart of the proposed method. 

According to this algorithm, each player plans 

his optimal strategy using the average network 

consumption. Then, according to the consumption 

curve of the players in different iterations, estimate 

of the average network load curve is updated by the 

distribution network and sent to the players. If 

customer 𝑛 cannot send its corresponding 𝑝𝑛 value 

at any iteration, the algorithm continues with the last 

𝑝𝑛 value sent by the player. In the remaining of this 

section, a modified mean-field algorithm is 

presented using the modified cost function and the 

modified 𝑝𝑛
∗ (𝑧(𝑘)) compared to the original mean-

field algorithm. The flowchart of the proposed 

method is shown in Fig. 3. 

Modified mean-field algorithm for electric 

vehicle charging problem: 

initialization 

   randomly initialize 𝑧(0), 𝑘 ← 0 

iteration 

   for 𝑛 ∈ 𝑁 

      𝑞𝑛
∗ (𝑧(𝑘)) ← argmin

𝑞𝑛

𝑈𝑛(𝑞𝑛, 𝑧(𝑘)) 

      𝑝𝑛
∗ (𝑧(𝑘)) ← 𝑝𝑛

𝑈𝑛 + 𝛾𝑛(𝑞𝑛
𝐶∗(𝑧(𝑘)) −

𝑞𝑛
𝐷∗(𝑧(𝑘))) 

   end 

      Λ(𝑧(𝑘)) ← ∑
1

𝑁
𝑝𝑛

∗ (𝑧(𝑘))𝑛∈𝑁  

      𝑧(𝑘 + 1) ← (1 − 𝜆(𝑘))𝑧(𝑘) + 𝜆(𝑘)Λ(𝑧(𝑘)) 

      𝑘 ← 𝑘 + 1 

Lemma 1: According to Theorem 3 in [25], if 

the assumptions of Theorem 2 in [25] are valid and 

the population of players converges infinitely, then 

the proposed algorithm converges to the Nash 

equilibrium point. 

4   Simulation and Results 

In the first of this section, different values of 

system components and parameter values are given. 

The load consumption of homes is borrowed from 

[27]. The predicted output power of the photovoltaic 

and wind turbine are employed in Table 1 from [28]. 

In this table, the output power is given based on the 

power of the installed units. The installed power of 

photovoltaic and wind turbines in this article is 1kW. 

The output power of the photovoltaic and wind 

turbine and the load consumption of homes is based 

on the table, and the power of the installed units for 

renewable resources is given in Table 1. For the 

feasibility of the problem, the load consumption of 

homes is considered quintuple of the curve from 

[27]. For all the customers, the values of the load 

consumption of homes and the power of the 

renewable resources are randomly generated for 

each hour from the normal distribution with mean 

parameter mu and standard deviation 

parameter sigma, that mu is equal to the value 

corresponding to the same hour in Table 1 and sigma 

is equal to 0.1. 

Parameters are selected as 𝑎𝑒,𝑛
𝑡 = 1000, 𝑏𝑒

𝑡 =

13.5, 𝑐𝑒
𝑡 = 0, 𝑎ℎ,𝑛 = 1.2, 𝑏ℎ = 0, and 𝜇𝑛 = 0.95.  

The battery capacity of each vehicle is employed as 

in [29]. These values are given in Table 2. 𝜍𝑛 is 

chosen from the column battery capacity in Table 2. 

To evaluate the modified algorithm, three 

different scenarios are considered. The details of 

these three scenarios are given in Table 3. In each 

scenario, the average number of vehicles of different 

types, the number of home loads without renewable 
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resources, the number of home loads with PV, the 

number of home loads with WT, the number of 

vehicles located in parking lots, the arrival time of 

batteries and the departure time of batteries are 

given.  

Table 1 Output power of photovoltaic and wind turbine. 

Hour 

Power of 

photovoltaic 

(kW) 

Power 

of 

wind 

turbine 

(kW) 

Load 

consumption 

of home 

(kW) 

1 0 0.119 13.1 

2 0 0.119 10.9 

3 0 0.119 9.65 

4 0 0.119 9.5 

5 0 0.119 8.85 

6 0 0.061 8.95 

7 0 0.119 9.45 

8 0.008 0.087 9.25 

9 0.15 0.119 8.75 

10 0.301 0.206 9.15 

11 0.418 0.585 10.55 

12 0.478 0.694 10.075 

13 0.956 0.261 13.35 

14 0.842 0.158 7.8 

15 0.315 0.119 8.35 

16 0.169 0.087 8.55 

17 0.022 0.119 8.65 

18 0 0.119 9.2 

19 0 0.0868 9.375 

20 0 0.119 9.85 

21 0 0.0867 10.15 

22 0 0.0867 9.235 

23 0 0.061 10.15 

24 0 0.041 15 

Table 2. Types of vehicles and battery capacity of each 

vehicle. 

Brand Model 

Battery 

capacity 

(kWh) 

𝑞𝑛
𝐶,max, 𝑞𝑛

𝐷,max
 

(kWh) 

Chevrolet Spark EV 18.3 7.32 

Honda FIT 20 8 

Fiat 500e 24 9.6 

BMW i3 27.2 10.88 

Mercedes B250e 28 11.2 

Ford Focus-e 33.5 13.4 

Hyundai Ioniq-e 38.3 15.32 

Nissan LEAF 40 16 

Toyota RAV4 41.8 16.72 

Kia Soul EV 64 25.6 

Tesla Model 3 78 31.2 

The minimum time between arrival and 

departure time is 2 hours. There is no limit to the 

choice between the minimum time of arrival and 

departure of batteries. However, if the minimum 

time between arrival and departure time is more than 

one; the total load curves of this system are very 

close to each other. Usually, the initial SoC of 

batteries when connected to the network may be any 

value between zero to one. For this reason, the initial 

SoC of batteries at arrival time is randomly 

considered in the interval [0,1]. Also, the requested 

charge for each car when disconnected from the 

network is more than 50%. Therefore, the final SoC 

of batteries at departure time is considered in the 

range of [0.5,1]. 

In each scenario, for further comparison, the cost 

function suggested in [30], [31], and [32] is used for 

the load curve flattening as follows: 

∆𝑃𝑡 = |∑ 𝑝𝑖
𝐷,𝑡

𝑁(𝑡)

𝑖=1

− ∑ 𝑝𝑖
𝑃𝑉,𝑡

𝑁(𝑡)

𝑖=1

− ∑ 𝑝𝑖
𝑊𝑇,𝑡

𝑁(𝑡)

𝑖=1

+ 𝛾𝑛 (∑ 𝑞𝑖
𝐶,𝑡

𝑁(𝑡)

𝑖=1

− ∑ 𝑞𝑖
𝐷,𝑡

𝑁(𝑡)

𝑖=1

) − 𝑝𝑔𝑟𝑖𝑑
𝑠𝑝𝑒𝑐

| 

(10) 

where 𝑝𝑔𝑟𝑖𝑑
𝑠𝑝𝑒𝑐

 is the specified grid power and is 

considered as the average of the load curve. Equation 

(10) is used for the load curve flattening per hour 𝑡. 

The total cost function for time interval 𝑡 is obtained 

by adding the battery degradation cost (6) to (10) as 

follows: 

𝐶 = ∆𝑃𝑡 + 𝛾𝑛𝐻𝑛(𝑞𝑛
𝑡 ) (11) 

The simulation result of Scenario 1 with 

Equation (7) which is obtained by implementing the 

modified algorithm is shown in Fig. 4. In Fig. 4 to 9, 

the light bars represent the total power consumption, 

the dark bars represent the total battery charge, and 

the dashed-line curve represents the load profile. The 

horizontal axis represents 24 hours a day. 

 
Fig. 4 Total battery charge, total home load, and total 

system load curve in Scenario 1 with Equation (7). 

Tables 4 to 6 show a typical vehicle of different 

types with different requests and show their battery 

charge 24 hours a day. Tables 4 to 6 show that the 

aggregator optimizes battery charging 24 hours a day 

by satisfying car requests in Equation (7) with 

Scenarios 1 to 3, respectively. Also, the daily bill and 

the cost of battery depreciation are given at the end 

of the tables. 
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Table 3 Details of each scenario. 

 Scenario 1 Scenario 2 Scenario 3 

Total number of customers 110 220 330 

Average number of each type of vehicle 10 20 30 

Total number of home loads 0.6*110=66 0.5*220=110 0.7*330=231 

Homes with PV (3/6)*66=33 0.2*110=22 (1/3)*231=77 

Homes with WT (2/6)*66=22 0.2*110=22 (1/3)*231=77 

Homes without renewable resources (1/6)*66=11 0.1*110=11 (1/3)*231=77 

Vehicles in parking lots 0.4*110=44 0.5*220=110 0.3*330=99 

Arrival time (randomly in the interval) [1,10] [1,6] [1,14] 

Departure time (randomly in the interval) [13,24] [9,24] [17,24] 

 

Table 4 Optimal battery charge 24 hours a day based on their request with Equation (7) in Scenario 1. 

Types of vehicles Chevrolet Honda Fiat BMW Mercedes Ford Hyundai Nissan Toyota Kia Tesla 

initial SoC 0.9382 0.7764 0.7571 0.7567 0.9281 0.9206 0.9444 0.8959 0.9250 0.5785 0.4437 

final SoC 0.6416 0.9339 0.5937 0.7399 0.9236 0.6812 0.5649 0.9782 0.7472 0.6378 0.6459 

arrival time 7 7 8 3 5 8 4 7 5 8 9 

departure time 20 13 21 14 15 17 18 17 18 21 19 

charge at hour 1 0.9382 0.7764 0.7571 0.7567 0.9281 0.9206 0.9444 0.8959 0.9250 0.5785 0.4437 

charge at hour 2 0.9382 0.7764 0.7571 0.7567 0.9281 0.9206 0.9444 0.8959 0.9250 0.5785 0.4437 

charge at hour 3 0.9382 0.7764 0.7571 0.7567 0.9281 0.9206 0.9444 0.8959 0.9250 0.5785 0.4437 

charge at hour 4 0.9382 0.7764 0.7571 0.7567 0.9281 0.9206 0.9095 0.8959 0.9250 0.5785 0.4437 

charge at hour 5 0.9382 0.7764 0.7571 0.7755 0.9281 0.9206 0.8875 0.8959 0.9184 0.5785 0.4437 

charge at hour 6 0.9382 0.7764 0.7571 0.7815 0.9281 0.9206 0.8683 0.8959 0.9118 0.5785 0.4437 

charge at hour 7 0.9382 0.8029 0.7571 0.7815 0.9281 0.9206 0.8401 0.8981 0.8903 0.5785 0.4437 

charge at hour 8 0.9382 0.8530 0.7571 0.7823 0.9281 0.9106 0.8169 0.9035 0.8842 0.5792 0.4437 

charge at hour 9 0.9382 0.9232 0.7571 0.7944 0.9376 0.9106 0.8097 0.9144 0.8842 0.5925 0.4703 

charge at hour 10 0.9382 0.9752 0.7571 0.8065 0.9423 0.9055 0.7885 0.9223 0.8822 0.5960 0.4912 

charge at hour 11 0.8763 0.9752 0.7103 0.8007 0.9301 0.8497 0.7410 0.9223 0.8515 0.5960 0.4943 

charge at hour 12 0.8316 1.0000 0.6878 0.8017 0.9301 0.8079 0.7067 0.9223 0.8274 0.5974 0.5110 

charge at hour 13 0.6168 0.9339 0.5316 0.6948 0.8317 0.6779 0.5931 0.8584 0.7336 0.5494 0.4922 

charge at hour 14 0.6600 0.9339 0.5753 0.7399 0.8867 0.6812 0.6076 0.9013 0.7626 0.5729 0.5297 

charge at hour 15 0.6600 0.9339 0.6035 0.7399 0.9236 0.6812 0.6076 0.9322 0.7626 0.5944 0.5618 

charge at hour 16 0.6667 0.9339 0.6242 0.7399 0.9236 0.6812 0.6050 0.9575 0.7626 0.6123 0.5827 

charge at hour 17 0.6678 0.9339 0.6247 0.7399 0.9236 0.6812 0.5900 0.9782 0.7626 0.6272 0.6106 

charge at hour 18 0.6678 0.9339 0.6247 0.7399 0.9236 0.6812 0.5649 0.9782 0.7472 0.6378 0.6305 

charge at hour 19 0.6678 0.9339 0.6247 0.7399 0.9236 0.6812 0.5649 0.9782 0.7472 0.6378 0.6459 

charge at hour 20 0.6416 0.9339 0.6129 0.7399 0.9236 0.6812 0.5649 0.9782 0.7472 0.6378 0.6459 

charge at hour 21 0.6416 0.9339 0.5937 0.7399 0.9236 0.6812 0.5649 0.9782 0.7472 0.6378 0.6459 

charge at hour 22 0.6416 0.9339 0.5937 0.7399 0.9236 0.6812 0.5649 0.9782 0.7472 0.6378 0.6459 

charge at hour 23 0.6416 0.9339 0.5937 0.7399 0.9236 0.6812 0.5649 0.9782 0.7472 0.6378 0.6459 

charge at hour 24 0.6416 0.9339 0.5937 0.7399 0.9236 0.6812 0.5649 0.9782 0.7472 0.6378 0.6459 

daily bill 2327111 2432895 2378960 2314514 2353698 2284007 2115215 2440015 2233247 2417383 2688417 

cost of battery 

degradation 
19.9493 7.9797 19.6272 11.8643 13.0384 26.6090 33.9436 15.7587 23.0552 20.3212 48.6414 

 

The simulation result of Scenario 1 with 

Equation (11) which is obtained by implementing 

the modified algorithm is shown in Fig. 5. 

 
Fig. 5 Total battery charge, total home load, and total 

system load curve in Scenario 1 with Equation (11). 

The simulation result of Scenario 2 with 

Equation (7) which is obtained by implementing the 

modified algorithm is shown in Fig. 6. 

 

Fig. 6 Total battery charge, total home load, and total 

system load curve in Scenario 2 with Equation (7).
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Table 5 Optimal battery charge 24 hours a day based on their request with Equation (7) in Scenario 2. 

Types of vehicles Chevrolet Honda Fiat BMW Mercedes Ford Hyundai Nissan Toyota Kia Tesla 

initial SoC 0.6634 0.6332 0.4379 0.8126 0.7593 0.7417 0.6734 0.5860 0.9350 0.6832 0.5363 

final SoC 0.7536 0.6461 0.9039 0.7568 0.7931 0.9634 0.8339 0.6137 0.7422 0.8447 0.6668 

arrival time 5 5 1 3 6 1 4 6 3 2 4 

departure time 22 20 17 21 24 19 14 21 20 15 15 

charge at hour 1 0.6634 0.6332 0.4379 0.8126 0.7593 0.7417 0.6734 0.5860 0.9350 0.6832 0.5363 

charge at hour 2 0.6634 0.6332 0.4379 0.8126 0.7593 0.7287 0.6734 0.5860 0.9350 0.6832 0.5363 

charge at hour 3 0.6634 0.6332 0.4515 0.8126 0.7593 0.7287 0.6734 0.5860 0.9160 0.6856 0.5363 

charge at hour 4 0.6634 0.6332 0.4553 0.8126 0.7593 0.7287 0.6800 0.5860 0.9095 0.6959 0.5465 

charge at hour 5 0.6758 0.6332 0.5097 0.8200 0.7593 0.7487 0.7062 0.5860 0.9095 0.7186 0.5655 

charge at hour 6 0.6839 0.6391 0.5597 0.8230 0.7661 0.7666 0.7275 0.5921 0.9034 0.7355 0.5814 

charge at hour 7 0.6839 0.6391 0.5887 0.8230 0.7668 0.7666 0.7352 0.5921 0.8859 0.7463 0.5911 

charge at hour 8 0.6839 0.6391 0.6222 0.8230 0.7843 0.7715 0.7544 0.5927 0.8838 0.7596 0.6038 

charge at hour 9 0.7005 0.6525 0.6674 0.8333 0.7992 0.8057 0.7851 0.5987 0.8838 0.7835 0.6245 

charge at hour 10 0.7014 0.6525 0.7122 0.8333 0.8192 0.8249 0.8094 0.5987 0.8838 0.8032 0.6377 

charge at hour 11 0.7014 0.6340 0.7122 0.8112 0.8192 0.8249 0.8094 0.5949 0.8516 0.8032 0.6377 

charge at hour 12 0.7014 0.6340 0.7326 0.8085 0.8192 0.8249 0.8135 0.5949 0.8358 0.8110 0.6395 

charge at hour 13 0.5615 0.5024 0.6313 0.6761 0.7510 0.7683 0.7685 0.5149 0.7493 0.7784 0.6119 

charge at hour 14 0.6657 0.5896 0.7162 0.7153 0.8319 0.8417 0.8339 0.5504 0.7785 0.8144 0.6456 

charge at hour 15 0.7036 0.6182 0.7831 0.7363 0.8871 0.8887 0.8339 0.5762 0.7785 0.8447 0.6668 

charge at hour 16 0.7517 0.6423 0.8483 0.7520 0.9296 0.9222 0.8339 0.5994 0.7785 0.8447 0.6668 

charge at hour 17 0.7706 0.6518 0.9039 0.7609 0.9527 0.9473 0.8339 0.6137 0.7785 0.8447 0.6668 

charge at hour 18 0.7706 0.6518 0.9039 0.7609 0.9592 0.9577 0.8339 0.6137 0.7739 0.8447 0.6668 

charge at hour 19 0.7706 0.6518 0.9039 0.7609 0.9594 0.9634 0.8339 0.6137 0.7648 0.8447 0.6668 

charge at hour 20 0.7706 0.6461 0.9039 0.7602 0.9594 0.9634 0.8339 0.6137 0.7422 0.8447 0.6668 

charge at hour 21 0.7536 0.6461 0.9039 0.7568 0.9594 0.9634 0.8339 0.6137 0.7422 0.8447 0.6668 

charge at hour 22 0.7536 0.6461 0.9039 0.7568 0.9656 0.9634 0.8339 0.6137 0.7422 0.8447 0.6668 

charge at hour 23 0.7536 0.6461 0.9039 0.7568 0.9656 0.9634 0.8339 0.6137 0.7422 0.8447 0.6668 

charge at hour 24 0.7536 0.6461 0.9039 0.7568 0.7931 0.9634 0.8339 0.6137 0.7422 0.8447 0.6668 

daily bill 2383668.6 2357584.8 2560159 2404088 2353112.7 2429988 2472276 2425875.3 2192267.3 2584857.7 2638650.7 

cost of battery 

degradation 
14.0870 12.6208 35.2500 16.8761 42.7321 29.5880 17.7343 16.9321 21.1295 28.8642 30.6655 

 

The simulation result of Scenario 2 with 

Equation (11) which is obtained by implementing 

the modified algorithm is shown in Fig. 7. 

 
Fig. 7 Total battery charge, total home load, and total 

system load curve in Scenario 2 with Equation (11). 

The simulation result of Scenario 3 with 

Equation (7) which is obtained by implementing the 

modified algorithm is shown in Fig. 8. The 

simulation result of Scenario 3 with Equation (11) 

which is obtained by implementing the modified 

algorithm is shown in Fig. 9. Given that the load 

profile in Figures 4, 6, and 8 is without peak and 

valley; therefore, the load profile is relatively 

smooth. In addition to smoothing the load curve, our 

goal was to minimize the daily bill and the cost of 

battery degradation. This is why, by minimizing the 

cost function, the load profile is not completely 

smoothed yet. 

 
Fig. 8 Total battery charge, total home load, and total 

system load curve in Scenario 3 with Equation (7). 

 
Fig. 9 Total battery charge, total home load, and total 

system load curve in Scenario 3 with Equation (11). 
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Table 6 Optimal battery charge 24 hours a day based on their request with Equation (7) in Scenario 3. 

Types of vehicles Chevrolet Honda Fiat BMW Mercedes Ford Hyundai Nissan Toyota Kia Tesla 

initial SoC 0.7086 0.6347 0.7070 0.3569 0.9696 0.6250 0.6733 0.8484 0.5520 0.5958 0.5750 

final SoC 0.6265 0.5991 0.9443 0.7733 0.5478 0.7308 0.7076 0.8830 0.5897 0.7157 0.9734 

arrival time 7 13 11 10 9 11 8 12 13 13 14 

departure time 17 20 19 20 19 20 17 21 17 18 24 

charge at hour 1 0.7086 0.6347 0.7070 0.3569 0.9696 0.6250 0.6733 0.8484 0.5520 0.5958 0.5750 

charge at hour 2 0.7086 0.6347 0.7070 0.3569 0.9696 0.6250 0.6733 0.8484 0.5520 0.5958 0.5750 

charge at hour 3 0.7086 0.6347 0.7070 0.3569 0.9696 0.6250 0.6733 0.8484 0.5520 0.5958 0.5750 

charge at hour 4 0.7086 0.6347 0.7070 0.3569 0.9696 0.6250 0.6733 0.8484 0.5520 0.5958 0.5750 

charge at hour 5 0.7086 0.6347 0.7070 0.3569 0.9696 0.6250 0.6733 0.8484 0.5520 0.5958 0.5750 

charge at hour 6 0.7086 0.6347 0.7070 0.3569 0.9696 0.6250 0.6733 0.8484 0.5520 0.5958 0.5750 

charge at hour 7 0.7086 0.6347 0.7070 0.3569 0.9696 0.6250 0.6733 0.8484 0.5520 0.5958 0.5750 

charge at hour 8 0.7086 0.6347 0.7070 0.3569 0.9696 0.6250 0.6767 0.8484 0.5520 0.5958 0.5750 

charge at hour 9 0.7278 0.6347 0.7070 0.3569 0.9584 0.6250 0.6866 0.8484 0.5520 0.5958 0.5750 

charge at hour 10 0.7278 0.6347 0.7070 0.4038 0.9459 0.6250 0.6929 0.8484 0.5520 0.5958 0.5750 

charge at hour 11 0.6818 0.6347 0.7070 0.4139 0.8739 0.6250 0.6913 0.8484 0.5520 0.5958 0.5750 

charge at hour 12 0.6818 0.6347 0.7070 0.4413 0.8151 0.6250 0.6913 0.8484 0.5520 0.5958 0.5750 

charge at hour 13 0.4926 0.4908 0.6286 0.3784 0.6670 0.5485 0.6163 0.7849 0.4901 0.5766 0.5750 

charge at hour 14 0.5465 0.5672 0.7414 0.4720 0.6754 0.6066 0.6581 0.8403 0.5390 0.6199 0.6389 

charge at hour 15 0.5761 0.5958 0.8079 0.5468 0.6754 0.6435 0.6794 0.8583 0.5628 0.6530 0.6940 

charge at hour 16 0.6035 0.6098 0.8612 0.6098 0.6649 0.6736 0.6892 0.8765 0.5776 0.6832 0.7451 

charge at hour 17 0.6265 0.6098 0.9086 0.6711 0.6437 0.6986 0.7076 0.8888 0.5897 0.7067 0.7926 

charge at hour 18 0.6265 0.6098 0.9286 0.7196 0.5987 0.7139 0.7076 0.8888 0.5897 0.7157 0.8298 

charge at hour 19 0.6265 0.6098 0.9443 0.7582 0.5478 0.7282 0.7076 0.8888 0.5897 0.7157 0.8690 

charge at hour 20 0.6265 0.5991 0.9443 0.7733 0.5478 0.7308 0.7076 0.8888 0.5897 0.7157 0.8988 

charge at hour 21 0.6265 0.5991 0.9443 0.7733 0.5478 0.7308 0.7076 0.8830 0.5897 0.7157 0.9265 

charge at hour 22 0.6265 0.5991 0.9443 0.7733 0.5478 0.7308 0.7076 0.8830 0.5897 0.7157 0.9654 

charge at hour 23 0.6265 0.5991 0.9443 0.7733 0.5478 0.7308 0.7076 0.8830 0.5897 0.7157 0.9904 

charge at hour 24 0.6265 0.5991 0.9443 0.7733 0.5478 0.7308 0.7076 0.8830 0.5897 0.7157 0.9734 

daily bill 2412909.9 2337965.9 2455084.9 2576939.3 2168316.8 2517623.9 2371980 2386023.2 2398280.3 2506481.3 3055400.3 

daily cost of 

battery degradation 
16.1737 12.6584 21.3535 31.9025 30.6476 17.1208 14.3622 15.2925 14.9822 26.2262 153.2483 

To compare the results of optimization using 

Equations (7) and (11), the variance and average 

load curve and simulation time of these two methods 

in three different scenarios are given in Table 7. In 

all three scenarios, the simulation time and the 

variance load curve resulting from equation (7) are 

less than the simulation time and the variance load 

curve resulting from equation (11). As a result, the 

optimization results from equation (7) have reduced 

both the variance load curve and the simulation time, 

and met the customer requirements. 

5   Conclusions 

Different connection strategies of electric vehicle 

batteries in homes and parking lots were examined. 

The output power of home-installed small wind 

turbines and photovoltaics using the forecast based 

on the previous days has been applied in the 

optimization. The modified algorithm met the total 

vehicle demands well, and it smoothed the load 

curve. Using the proposed algorithm, both the profit 

of the distribution network and the customers are 

maximized. In addition, the predetermined battery 

charge is met when disconnecting the vehicle from 

the network. 
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Table 7 Comparison between optimization with Equations (7) and (11) in different scenarios. 

 Scenario 1 Scenario 2 Scenario 3 

Load curve variance with Equation (7) 7899.26 21755.22 92489.61 

Load curve average with Equation (7) 695.79 1171.39 2412.92 

Simulation time with Equation (7) (mins) 18.45 38.99 51.57 

Load curve variance with Equation (11) 10441.38 27603.05 134325.32 

Load curve average with Equation (11) 656.74 1105.51 2284.25 

Simulation time with Equation (11) (mins) 23.87 55.16 81.79 
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