Volume 19, Issue 2 (June 2023)                   IJEEE 2023, 19(2): 2546-2546 | Back to browse issues page

XML Print

Abstract:   (741 Views)
The Direct power control and vector control of DFIG has known advantages, but certain disadvantages like steady state performance and transient performance of the system still persist. In order to overcome these, a novel technique based on Improved Sensorless Rotor Position Computational Algorithm with Integrated Direct Power and Vector Control (IDPVC) for S-VSC interfaced DFIG is proposed in this work. The advantages of both vector control and direct power control techniques are addressed in this method. This proposed IDPVC control minimizes the real and reactive power ripples at steady state and total harmonic distortion in stator current. In the proposed control, data acquired from sensorless rotor position computation makes the system more stable and avoids the sensor maintenance and feedback errors. The proposed system is tested for a 3.73 kW DFIG and compared with a benchmark DPC control of single VSC based DFIG. The results show the effectiveness of the approach under various wind speed conditions and found to be satisfactory.
Full-Text [PDF 1837 kb]   (488 Downloads)    
Type of Study: Research Paper | Subject: Distributed Generation/Integration of Renewables
Received: 2022/05/31 | Revised: 2023/06/06 | Accepted: 2023/06/11

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.