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Abstract: The impact of cognitive tasks on human movement is of practical 

significance; we hereby aim to demonstrate that a significant relationship exists between 

the dual task’s cognitive demand and the disruption caused in hand movement, with the 

hope to extend this experiment to subjects with disorders (MS, CP, stroke patients) in 

future studies. By doing so, we hope to be able to develop a metric for evaluating their 

disease levels using our method and minimize clinical interventions. While previous 

research has predominantly focused on lower body activities, this study explores the 

effect of dual tasks on hand movements in healthy individuals. 

A simulated finger-to-nose test combined with a standard reverse counting task, 

featuring four difficulty levels, was conducted. Utilizing SVM and decision tree 

classifiers, we analyzed various features to discern the impact of cognitive tasks on hand 

movements, including completed cycles and idle time at markers. Our findings reveal 

that features such as entropy and kurtosis effectively distinguish between task difficulty 

levels and hand movement disruption. The classifiers achieved accuracies of 70% and 

74% for decision tree and SVM, respectively. We hope extending this research to 

diseased subjects could potentially provide a more accurate assessment of disease 

severity through the measurement of hand movements during cognitive tasks, offering a 

non-clinical alternative for disease evaluation. 
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1 Introduction 

variety of movement (mostly clinical) and cognitive 

tests are commonly used as identifiers of the type 

and severity of numerous diseases. Hand movement tests 

such as opening a jar of jam, writing down the number 8, 

finger tapping, finger to nose test, etc., are all examples 

of clinical tests which help physicians with their 

diagnosis, referred to as Chedoke Arm and Hand 

Activity Inventory (CAHAI) [1]. These tests are all 

qualitative examinations performed by physicians 
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according to their professional preference and 

experience, and there is no gold standard for such 

practices. Patients are often scored on a scale of 1-5 

based on their performance on these tests, with great 

variance between the opinions of physicians on how the 

patient performs. Apart from the lack of homogeneity in 

the named tests and the different scaling of patients by 

physicians, less experienced neurologists may easily 

miss small but highly indicative movement patterns. 

Such factors contribute to this area being prone to 

significant physical error [2]. The approach that 

researchers have obtained for dealing with these errors is 

the creation of a unified, quantitative test [3]. 

Many studies have pursued the goal of quantifying 

these commonly performed tests and creating new tests 

for such methods of diagnosis. Other researchers have 

aimed to create a valid tool that can serve as a gold-

standard and reduce the errors in existing methods. The 

lack of such tools becomes more evident in the 

evaluation of patient rehabilitation outcomes. In one of 
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such studies, Rodriguez et al. [4]  tried to prove the 

effectiveness of the finger-to-nose test by studying 

endpoint performance (total movement time, trajectory 

straightness, and precision) and movement variability 

(joint rotations and inter-joint coordination). Their 

results demonstrate that the finger-to-nose test can be 

used as a valid indicator of upper limb coordination 

levels in stroke patients. In another study, Esteki et al. 

[5] looked at the effectiveness of Deep Brain Stimulation 

(DBS) on multiple sclerosis (MS) patients by simulating 

the finger-to-nose tests and studying the mean and 

deviation from the straight path of movement. The 

outcome of this study demonstrated the effectiveness of 

DBS on MS patients’ hand vibration. Esmaeilpour et al. 

[6] complemented the above mentioned study by also 

analyzing non-linear features such as entropy, dominant 

frequency, mean, median, and standard deviation. Their 

results further strengthened the hypothesis presented by 

[4]. Another study by Lackzo et al. [7] analyzed inter-

joint coordination deficits revealed in the decomposition 

of endpoint jerk during goal directed arm movement 

after stroke by calculating the smoothness of motion in a 

two-joint robot. Some researchers have performed more 

specific analyses using the quantification of movement 

for identifying the degree of disease in strokes[8, 9], 

Multiple Sclerosis[10], Ataxia[11, 12], and Parkinson 

disease[2]. Also, Krishna et al. conducted a study 

utilizing three clinical tests, including the FNT, to assess 

the severity of Cerebellar Ataxia (CA) and extract 

relevant features from hand movements. Their findings 

indicated that features such as acceleration serve as 

indicators of the disease, and the FNT demonstrated high 

accuracy and specificity in detecting CA [13]. 

Additionally, Khai et al. employed virtual reality (VR) 

technology to determine hand positions, simulating the 

Finger-to-Nose Test on 10 Cerebellar Stroke (CS) 

patients and 19 healthy subjects. Their research revealed 

that the reaching error was significantly higher in CS 

patients compared to age-matched controls across all 

conditions, suggesting its potential as an assessment tool 

for the severity of CS [14]. Similarly, Takayuki et al. 

utilized VR to simulate the Finger-to-Nose Test for 

evaluating the severity of cerebellar ataxia. Their study 

proposed an automated FNT measurement and 

evaluation system within the VR environment, 

demonstrating high accuracy and quantitative 

assessment capabilities [15]. 

Different approaches have been taken to detect 

cognitive patterns during movement. Some researchers 

have studied the interruptions that occur while 

performing two cognitive tasks concurrently, while 

others have looked at the effect of movement on the 

ability to perform cognitive tasks. According to the 

“limited capacity theory” attention, when a human 

performs two attention-demanding tasks simultaneously, 

one or both tasks will be disrupted [16]. For example, 

when we walk and text, our walking speed will 

unconsciously decrease, which is named the dual-task 

cost. Speciali et al. [17] studied simultaneous gait 

movements with cognitive tasks in Parkinson’s patients 

in 2013. They detected a significant difference in 

patients when just walking, and walking while 

performing mathematical operations. In another study, 

Tsuyoshi Asai [18] analyzed the effect of cognitive tasks 

on body movement and gait in patients suffering from 

fear of falling, and demonstrated that simultaneous 

backward counting while walking increased the 

fluctuations in body movement. Pam Belluck [19] also 

studied the effect of cognitive tasks while walking on 

Alzheimer’s patients by asking subjects to count 

backward from 50 while walking, and demonstrated that 

gait movement was disrupted when counting was in 

progress. Other studies have focused on standing and 

posture changes while performing cognitive tasks [20-

26], while some groups have specifically studied the 

effect of cognitive tasks on lower limbs such as the ankle 

[27, 28]. 

Despite the aforementioned studies being conducted to 

analyze the effects of dual tasking, no studies have 

analyzed the effect of cognitive tasks on the hand 

movement of subjects. We hereby aim to demonstrate 

that a significant relationship exists between the dual 

task’s cognitive demand and the disruption caused in 

hand movement, with the hope to extend this experiment 

to subjects with disorders (MS, CP, stroke patients) in 

future studies. By doing so, we hope to be able to 

develop a metric for evaluating their disease levels using 

our method and minimize clinical interventions. 

2 Methods 

2.1 Participants 

The general goal of this experiment was to study the 

effects of cognitive tasks on hand movement as a basis 

for future studies. The signal from the movement task 

was recorded while the cognitive tasks were performed 

simultaneously. For this means, we aimed to form a 

representative group of participants that were in similar 

conditions. A group of 25 males, all right-handed and in 

the age range of 20-30 were recruited. Subjects were 

asked to fill out questionnaires to ensure they had no 

cognitive or movement disabilities. All tests were carried 

out in the morning to ensure similar test conditions. This 

precaution was applied because in preliminary 

experiments, it was observed that the focus and attention 

levels of individuals varied at different times of the day. 

2.2 Apparatus 

In this study, each subject’s hand movement data is 
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collected in three dimensions using an ultrasonic motion 

detector system (CMS10, manufactured by Zebris, 

Germany). Three sensors are used for this purpose, 

where two are used as the start and target points, and the 

third is placed on the subject’s index finger as a pointer. 

WinData is used to acquire the signal, MATLAB is used 

for converting ASCII data to interpretable form and 

extracting signal properties, and SPSS is used for 

statistical analysis. 

2.3 Movement task 

As previously mentioned, the finger-to-nose test is one 

of the well-known tasks in order to detect movement 

disorders; also, it has already been proven as a valid 

indicator of upper limb coordination levels for patients 

suffering from diseases like stroke and Multiple 

Sclerosis [4-6, 13-15]. In order to simulate the finger-to-

nose test, we placed two markers, hereafter referred to as 

the close and far targets on a table, and the third marker 

on the index finger of the subject’s right hand. The close 

and far markers were placed 10cm and 40cm away from 

the subject, respectively. Subjects were then seated at a 

90-degree angle behind the table, with the stable markers 

placed in front of them and on the anterior-posterior 

stretch (AP3). A still chair was used to prevent any extra 

movement, and all subjects were asked to remain in a 

relatively still position during the experiment. Each 

subject was asked to start moving between the two 

markers one second after the start of the experiment by 

repeatedly moving their finger between the close and far 

markers. This simulation of the finger-to-nose test is 

widely used by physicians for clinical studies. A camera 

was placed at the sagittal plane of the subject, where the 

ultrasound device captured 3D position at a frequency of 

80 Hz in 20 seconds. The 20 second window was 

selected to ensure sufficient timing to capture all 

features, but also to keep the test short enough to prevent 

fatigue in the subjects. A schematic of the experimental 

setup is presented in Fig. 1. 

 
Fig. 1. A schematic of the experiment setup. The red dots 

indicate the three markers. The distance between each marker 

and the subject is shown.  

2.4 Cognitive Task 

This test consisted of four different difficulty levels, 

categorized based on the level of difficulty of the second 

task accompanying the primary hand movement 

explained above. The difficulty levels were obtained 

from a survey of 30 people using the Likert Scale [29]. 

At the first level, subjects were asked only to perform 

the movement test without any extra cognitive tasks. In 

the following three levels, the subjects were asked to 

perform simple mathematical operations while 

performing the movement task. The mathematical 

operation consists of the subject performing subsequent 

negations from a specific number, and counting 

backward. At the second level, which is named the easy 

level, the subject was asked to negate 2 from a specific 

number each time. The third (moderate) and fourth 

(difficult) levels consist of the subject continuously 

negating 7 and 13 from a given number, respectively. 

For each participant, the experiment was conducted 

and data was recorded three times on the same morning. 

Subjects were first engaged in a test round to familiarize 

them with the procedure. Subjects created multiple 

pauses during this test round to ask questions and 

confirm the procedures they were given. This caused the 

first-round data to be highly unstable; therefore, the data 

gathered in this round was discarded. The first period of 

the movement signals was also discarded because it 

included starting jerks and vibrations. 

2.5 Signal Processing 

The initial two markers serve the purpose of 

establishing both the starting and ending points of the 

hand movement trajectory, while the third marker is 

dedicated to tracking the hand's 3D path between these 

points. The 3D coordinates of this marker were recorded 

to generate three 2D planes, representing the hand's 

vibration, movement, and elevation. It is evident that 

distinct patterns of hand movement can be discerned 

within each dimension. Fig. 2 illustrates the hand 

movement patterns in the Y-X and Y-Z planes. These 

segregated signals hold potential for offering valuable 

insights and information, thus each plane (x, y, and z) 

was analyzed individually. In the pre-processing of the 

data, the following steps were taken: 1) the baseline 

signal was first removed, 2) the signal was mean 

removed, 3) interpolation was applied for the lost data, 

and 4) a 10 Hz low-pass filter was applied to remove 

noise. The data obtained after these steps was used for 

calculating movement features. A sample of hand 

movements in the sagittal and horizontal trajectories 

during a 20 second test without a cognitive task is 

depicted in Fig. 2a and 2b, respectively. After obtaining 

signals and applying data pre-processing, we computed 

some movement features which can be divided into 
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statistical and non-linear features. In the statistical 

features, the following are evaluated: 1- Precision and 

accuracy: used as performance estimation metrics, 

obtained using the average movement of the hand and 

standard deviation; 2- The number of completed cycles: 

computed by counting the number of back and forth 

between the near and far markers; In the role of non-

linear features, we had: 1- Cumulative power: obtained 

by calculating the area under the curve of the Fourier 

transform of the signal; 2- Index of curvature: used to 

calculate the straightness of the path, obtained using the 

ratio of the 3D distance traveled to the shortest distance 

between the two markers; 3- Skewness and kurtosis: 

measured as the third and fourth moment of probability 

distributed function calculating the asymmetry and 

tailedness of the PDF. Then, the approximate entropy 

and Shannon entropy are computed to compute the 

amount of irregularity and information in the signal. 

Also, the velocity of hand movement is computed as the 

average speed of the hand in the movement plane. 

 

 
Fig. 2. Sample of hand movements during a 20 second finger to nose test in the sagittal and horizontal trajectories for a healthy 

subject without a cognitive task 

2.6 Statistical Analysis 

After calculating the features, statistical analysis was 

performed to determine the significance of each feature 

and determine to what extent each of the obtained 

features can predict the difficulty level. Since there was 

no independence within the groups, we used a Paired-T 

test to determine the difference between the two groups, 

and used a repeated measure test to test for statistical 

significance between the 4 classes (no cognitive task, 

easy, moderate, and difficult). 

The selected features were then fed into a pattern 

classification algorithm to determine to what extent they 

were capable of determining the correct class of each 

signal. We used both support vector machines (SVM) 

and decision trees for this purpose, and constructed the 

confusion matrix using the results. From the confusion 

matrix, we obtained the true positive rate, false negative 

rate, positive predictive value and false discovery rate. 

All classifications were performed using MATLAB’s 

classification learner. A linear SVM model with box 

constraint level set to 5, kernel scaling mode set to 

automatic, and all other parameters set as default was 

used. For the decision tree, a coarse tree was used with 

the maximum number of splits set to 4, and all other 

parameters set to default. The parameters for both the 

SVM and decision trees were selected through trial and 

error, where it was found that the selected parameters 

yielded the best results. 

3 Results and Discussion 

3.1 Feature selection 

All experiment results presented in this section have 

been evaluated using five-fold cross-validation. 

Regarding the choice of statistical tests, we considered 

both parametric and non-parametric options. While 

parametric tests are typically used when data are 

normally distributed, non-parametric tests are more 

robust to deviations from normality and are suitable for 

data with non-normal distributions or smaller sample 

sizes. In this paper, we opted for parametric tests due to 

the nature of our data and the sample size. With a sample 

size of 𝑛≥25 and a skewness value close to zero, we 

determined that our data met the assumptions for using 

parametric tests. Experiment results for the repeated 

measure tests for Kurtosis, approximate entropy, and 
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Shannon entropy in the hand’s movement plane are 

provided in Table 1. Table 1 shows that repeated 

measure tests determine a significant difference between 

the classes with an error rate of 5%. The first feature to 

consider is entropy, where the repeated measure test 

shows that the entropy can distinguish the 4 classes from 

one another with relatively high confidence. The best 

result comes from Shannon entropy as our first feature 

when the p-value equals 0.005. The next feature is 

kurtosis, where according to Table 1 it is able to 

distinguish between the classes with p-value equals to 

0.001. Also, Cumulative power shows that it can 

distinguish four classes with a p-value of 0.001 in 

repeated measure test. 

 
Table 1 The repeated measure test for Kurtosis, approximate 

entropy, and Shannon entropy in the hand’s movement plane. 

Index P-value F 

Kurtosis <0.001 7.009 

Approximate entropy 0.018 4.28 

Shannon entropy 0.005 4.62 

Cumulative Power <0.001 5.13 

 

We also analyze the index of curvature, which looks at 

the ratio of distance traveled by the subject to the 

shortest distance between the two markers. It goes 

without saying that this metric will be increased once the 

subject is not able to follow the normal and optimal path 

between the markers. This feature can differentiate the 

primary and easy levels from the medium and hard 

levels with statistical significance, which can also be 

observed in Fig. 3. However, it could not determine a 

significant difference between the primary and easy 

levels, or between the moderate and difficult levels. 

 
Fig. 3. Index of curvature for the four cognitive levels. 

Additionally, Fig. 4 visually compares results for 

different task difficulties, and as it can be seen, kurtosis 

and the number of completed cycles are highest for the 

easy level compared to other levels. Conversely, idle 

times at both markers are lowest at both markers for the 

easy level. A Paired-T test is applied to the number of 

cycles and idle time at each marker to distinguish 

between the easy level and the other three levels (Table 

2). Since, we have four classes and we want to compare 

these four classes two by two, we should use Bonferroni 

correction to normalize p value and make it comparable. 

So, the Bonferroni correction is applied and because we 

are comparing multiple groups (n=4), therefore a p value 

of 0.0125 is used. As shown in figure 4, there is a 

correlation between completed cycles, idle time at the 

near marker and idle time at the far marker. This is 

probably because subjects will have a higher number of 

completed cycles when they have shorter pauses at the 

markers. So, to have less redundancy, we only select 

completed cycles. Finally, kurtosis, cumulative power, 

Shannon entropy, index of curvature, and completed 

cycles were chosen to feed our classifiers. 

 
Table 2 The Paired-T test for number of completed cycles, idle 

time in first marker and idle time in second marker in the 

hand’s movement plane. 

Index Cognitive Level P-value T 

 

Completed 
cycle 

no cognitive task 

& easy level 
<0.001 4.17 

Easy & moderate 

level 
0.002 3.19 

Easy & difficult 

level 
0.002 3.07 

Idle time in 

first marker 

no cognitive task 

& easy level 
0.011 2.41 

Easy & moderate 

level 
0.015 2.28 

Easy & difficult 

level 
0.001 3.3 

Moderate & 

difficult level 
0.302 0.52 

 Idle time 

in second 

marker 

no cognitive task 

& easy level 
0.007 2.6 

Easy & moderate 

level 
0.006 2.68 

Easy & difficult 

level 
<0.001 3.69 

Moderate & 

difficult level 
0.197 0.86 
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Fig. 4. (A) Completed cycles for the four cognitive levels; (B) Kurtosis for the four cognitive levels; (C) Idle time at the near marker 

for the four cognitive levels; (D) Idle time at the far marker for the four cognitive levels. 

By looking at the confusion matrix of the decision tree 

and SVM classifiers (Figure 5), we obtain accuracies of 

70% and 74%, respectively. Classes 1 and 2 demonstrate 

a high predictability value close to 80%, while this value 

drops to 52% and 68% for classes 3 and 4, respectively. 

By looking at the true positive rate of the classes, it is 

observed that the features were able to predict classes 1, 

2 and 4 with an average accuracy close to 80%, whereas 

this figure dropped to approximately 50% for class 3. 

According to these results, our algorithms were easily 

able to distinguish between all classes except class 3, as 

the data demonstrated overlaps with the other classes. 

 

 
Fig. 5. Confusion matrix for decision tree (left); confusion matrix for svm (right). 

 

During the experiments, when we asked subjects to 

move their hands between the two markers without 

performing any cognitive tasks, they were able to do so 

easily and with full control over their movement. But 

when the counting task started, a decrease in movement 

control were observed. Subjects generally tried to 
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compensate this decrease in control by increasing 

movement speed. Therefore, it was observed that after 

the start of the cognitive task, the number of cycles 

completed by each individual increased (Figure 4). 

Although this fact must be taken into account that at the 

easy level, the subjects do not require significant focus 

to perform the cognitive task as it is relatively simple. 

Therefore, they were able to increase their movement 

speed and thus complete more cycles quite easily. But 

during the next two levels and as the cognitive task 

became more difficult, subjects had to pay more 

attention to their counting. Therefore, it was observed 

that the number of cycles during these levels decreased 

once again, and kurtosis also decreased at both levels, 

more so for the hard level than the medium. 

We also looked at the possibility of correlation 

between the number of cycles completed and the 

velocity of hand movement and idle time at the markers. 

By computing the idle time at the first marker (Figure 4), 

we found that idle time was significantly less for the 

easy level compared to the other levels. This re-confirms 

our theory that when the subject starts his cognitive task, 

a reduction in movement control occurs, and the subject 

tries to compensate for this with increased movement 

speed and less idle time. Once again, it is observed that 

the subject is only able to attempt this compensation 

when the cognitive task is simple to perform and 

requires minimal concentration, as this does not occur in 

the other two difficulty levels. Hence, idle time at the 

markers increases as the difficulty level increases 

(Figure 4). By applying a Paired-T test, it was found that 

this difference is significant between all classes except 

between the moderate and hard levels (Table 2). 

Classification results also confirmed that difficulty 

existed when distinguishing between the medium and 

hard levels. This does not overshadow our work since 

the goal was to determine whether it’s possible to 

distinguish between an individual state while performing 

a cognitively involved dual task and while not 

performing one. This problem could be dealt with by 

increasing the difference between difficulty levels in 

future research. 

4 Conclusion 

In this study, it was revealed that performing cognitive 

tasks can have a significant effect on the hand 

movements of healthy subjects, and that the difficulty of 

the task being performed is also effective. While the 

subjects were easily able to perform the movement tasks, 

they encountered problems once this task was coupled 

with a backward counting task. At easier levels of this 

task, subjects responded by increasing movement speed 

and decreasing idle time at each marker to compensate 

for disrupted movement. When the cognitive task 

became more difficult and demanded more 

concentration, they were forced to reduce speed to 

ensure correct movement. Our results also demonstrated 

that an increase in difficulty levels of the tests may be 

required to achieve statistically significant results. This 

work was conducted and completed in 2019 so we hope 

for many advancements since then in this field. 
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