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Abstract: Directed Acyclic Graphs stand as one of the prevailing approaches for 

representing causal relationships within a set of variables. With observational or 

interventional data, certain undirected edges within a causal DAG can be oriented. 

Performing intervention can be done in two different settings, passive and active. Here, 

we prove that an optimal intervention set can be obtained based on the minimum vertex 

cover of a graph. We propose an algorithm that efficiently identifies such an optimal 

intervention set for chordal graphs within polynomial time. Performing intervention on 

this optimal set recovers all the undirected edges in graph G, regardless of the underlying 

ground truth DAG. Furthermore, we present an algorithm for evaluating the performance 

of passive algorithms. This evaluation provides insights into how many intervention steps 

of a specific algorithm are required to recover all edges in the causal graph for any possible 

underlying ground truth in the equivalence class. Experimental findings underscore that 

the number of nodes in the optimal intervention set increases with growing the number of 

nodes in a graph, where the edge density is fixed, and also increases with the rising edge 

density in a graph with a fixed number of nodes. 
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 

1 Introduction 

evealing the causal relationships within a dataset is a 

fundamental objective in empirical sciences. Without 

understanding how variables in a complex system 

influence each other, it becomes challenging to predict the 

system’s behavior when subjected to specific 

interventions.  

In scientific literature, causal relationships among 

variables are commonly represented using directed 

acyclic graphs (DAGs). In DAG representation, a directed 

edge from node 𝑣1 to node 𝑣2 indicates that 𝑣1 is a direct 

cause of 𝑣2. Through observational data, and assuming 

faithfulness and causal sufficiency, it is possible to 

identify the true causal graph within a Markov 

equivalence class (MEC). The MEC is a set of all DAGs 

that encode the same conditional independences among 
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variables. It has been demonstrated that all DAGs exhibit 

identical skeletons and sets of v-structures1, within a 

given MEC. Given the set of v-structures and skeleton, 

four rules are introduced in [10] for further edge 

orientation, known as Meek rules. By applying these 

rules, more edges in the graph can be oriented, while 

ensuring that no directed cycles or new v-structures are 

introduced.  

Applying the rules iteratively recovers more edges.  

However, some edges may not be recovered even after 

applying Meek rules. The resulting graph is referred to as 

the essential graph, summarizing all DAGs within the 

MEC. Directed edges in the essential graph maintain 

consistent orientation across all DAGs within MEC. 

Undirected edges in the essential graph result in opposite 

directions for that edge in at least two DAGs within the 

MEC. 
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The primary standard procedure for uncovering the 

complete causal structure entails conducting interventions 

within the system. Observational data facilitates the 

recovery of the essential graph, while interventional data 

aids in orienting undirected edges. The objective here is 

to orient additional edges, given the absence of v-

structures and directed cycles in the graph. Again, Meek 

rules serve as a foundation for recovering more edges in 

the graph. Here, we focus on the node selection algorithm 

for intervention. In the causality context, a problem of 

experiment design is defined as devising algorithms for 

selecting intervention nodes and performing intervention 

on those nodes for recovering undirected edges in the 

graph. In the following, we discuss proposed solutions for 

the experiment design problem in previous work.  

Theoretically, recovering the complete causal structure 

is possible with enough interventions, but in many 

practical applications, challenges arise due to time and 

cost constraints. The objective of the experiment design 

problem is to create a series of experiments, each entailing 

the execution of multiple interventions concurrently. 

Some work allowed for a fixed maximum number of 

interventions per experiment, while others perform only 

one intervention per experiment. 

Passive learning and active learning represent different 

approaches within the experiment design problem. In the 

active learning scenario, experiments are performed 

sequentially, and the results of each experiment are used 

to guide the design of subsequent ones. Perfect 

randomized interventions can orient all edges which are 

connected to an intervened variable. Using these newly 

oriented edges, Meek's rules can orient additional edges 

within resulting chain components. In active settings, the 

goal is to identify the complete causal structure with fewer 

interventions. Passive learning operates within a limited 

budget for selecting interventions, utilizing the derived 

MEC from observational data and conducting 

experiments simultaneously. The objective is to devise a 

sequence of experiments with minimal interventions to 

orient as many edges as possible in the causal structure. 

In the passive learning scenario, [7] proposed a 

straightforward method that involves listing all DAGs 

within a MEC and selecting a minimal set of variables for 

interventions, ensuring the recovery of all potential 

underlying DAGs from the intervention outcomes. [4] 

introduced a greedy algorithm for selecting target 

interventions by sampling DAGs from the MEC. This 

study estimates the average number of edges that can be 

oriented as a result of interventions. [8] proposed an 

algorithm for experiment design considering a cost 

associated with intervening on each variable. They 

demonstrated that the optimal solution can be obtained in 

polynomial time when the causal structure is a tree or a 

clique tree. In [13], the author presents Meek functions as 

a solution to causal orientation learning problems. The 

functions exhibit favorable properties, allowing for an 

accelerated application of Meek rules. They apply Meek 

functions efficiently by employing a dynamic 

programming approach. Furthermore, they introduce a 

lower bound for number of undirected edges that can be 

oriented through intervention by employing the proposed 

Meek functions. 

This paper aims to develop an algorithm to find the 

optimal intervention set, in terms of number of nodes, 

which performing intervention on, recovers all undirected 

edges in the graph. Here is a summary of the main 

contributions of the paper: 

     We state a proposition to find the minimal 

intervention set, which recovers all the undirected 

edges in the passive setting after intervention.  

     We propose an algorithm that computes the 

optimal intervention set in a polynomial time on 

chordal graphs. 

     We propose an algorithm that identifies how 

many interventions a passive setting algorithm 

needs for recovering all the undirected edges in a 

graph, regardless of what underlying ground truth 

DAG is. 

Following is the organization of the paper: Section 2 

provides problem definition and introduces relevant 

terminologies. Section 3 presents the proposed approach 

for finding the optimal intervention set, and an evaluation 

method for different algorithms. The experimental results 

are reported in Section 4, and the paper concludes in 

Section 5, discussing potential future research directions. 

2 Preliminaries 

2.1 Graph Terminology 

A graph 𝐺 is defined as a pair 𝐺(𝑽, 𝑬), where 𝑽 

represents the set of nodes (vertices) in the graph and 𝑬 

represents the set of edges. An undirected edge between 

two nodes 𝑣1 , 𝑣2 ⊆ 𝑽 is denoted as 𝑣1 − 𝑣2 . This edge 

does not have a specific direction and can be directed in 

both directions. An oriented edge originating from node 

𝑣1 and terminating at node 𝑣2 is represented as 𝑣1 → 𝑣2.  

This manuscript assumes that there can be, at most, a 

single edge (whether directed or undirected) connecting 

any pair of nodes within the graph. This ensures that the 

graph does not contain multiple edges between the same 

pair of nodes. For a node 𝑣 in the graph, 𝑛𝑒𝑖𝑔ℎ(𝑣) 

represents the set of nodes that are directly connected to 

𝑣. In other words, 𝑛𝑒𝑖𝑔ℎ(𝑣) contains all the neighbors of 

𝑣, which are the nodes directly connected to 𝑣 by either 

an undirected or directed edge. 

A clique in an undirected graph is a subset of nodes 

where every pair of nodes in the subset are adjacent. In 

other words, a clique is a fully connected subgraph. A 
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partially directed acyclic graph (PDAG) is a graph 

without any directed cycle [12]. In addition, a directed 

acyclic graph (DAG) is a PDAG, like 𝐺,  where all the 

edges in 𝐺 are directed. 

Any sub-graph which has the formation of 𝑣1 →  𝑣2  ←
 𝑣3 is called as a v-structure. In addition, a chain graph is 

a graph without any partially directed cycle.  

After eliminating all directed edges in a chain graph, what 

remains are undirected disjoint chain graphs, known as 

chain components. A graph is deemed chordal if there is 

a chord present in any cycle with a length exceeding three. 

2.2 Causal Model 

The causal relationships among variables 𝑋 =
𝑋1, . . . , 𝑋𝑛, are commonly represented by a directed 

acyclic graph (DAG) G. Each variable in 𝑋 corresponds 

to a node in G, and an arrow from one node to another, 

e.g., 𝑣1  →  𝑣2, indicates that the variable represented by 

𝑣1 directly influences the variable represented by 𝑣2. This 

DAG, which captures the causal relationships, is referred 

to as a “causal DAG”. 

The Markov property is a fundamental concept in 

probabilistic graphical models. In the context of a joint 

distribution 𝑃 across 𝑋, Markov property holds true with 

respect to graph 𝐺 when any variable within 𝐺 becomes 

independent of its non-descendants when conditioned on 

its parents. This property ensures that the conditional 

independence relationships encoded by 𝐺 hold in the 

distribution 𝑃. 

Given the assumptions of faithfulness and causal 

sufficiency, the Markov property allows for the inference 

of any conditional independence within the joint 

distribution P. In other words, the Markov property 

characterizes the conditional independence assertions 

implied by the causal structure. 

The collection of all Directed Acyclic Graphs (DAGs) 

that represent identical conditional independence 

relationships is referred to as a Markov equivalence class 

(MEC). Each MEC is associated with an essential graph, 

wherein the skeleton of this essential graph matches the 

skeletons of all DAGs within the MEC. In the essential 

graph, an edge is directed if and only if it has the same 

direction in all DAGs of the MEC. Furthermore, the 

essential graph captures the common structure shared by 

all DAGs in the MEC. 

Removing of all directed edges from the essential graph, 

while preserving the directed ones, results in another 

graph known as the chain component. In other words, 

each chain component corresponds to a subset of 

variables that have a chain-like causal relationship. There 

are no unidentified v-structures (collider structures) 

within a chain component, since all the v-structures have 

been identified and represented by directed edges in the 

essential graph.  

We use the term UCCG to refer one of the chain 

components of an essential graph. It represents a subset of 

variables with a chain-like causal relationship, where the 

presence of undirected edges indicates conditional 

dependencies between the variables. 

In the context of inferring the causal structure from 

observational data, the essential graph representing the 

true underlying DAG can be reconstructed through the 

execution of conditional independence tests on the 

observational distribution P [14]. These tests allow us to 

identify the absence of direct causal relationships between 

variables. 

However, to further determine the orientations of 

undirected edges and fully recover the causal structure, 

intervention in the system is required. The notion of 

intervention used here is referred to as a “hard 

intervention” as defined by [2] and [11]. When a random 

variable 𝑋 is intervened, it obtains values from a 

randomized distribution independent of its parents' 

values.  

An independent set 𝑰 in a graph 𝐺 is a subset of vertices 

such that for every pair of vertices 𝑣1 and 𝑣2 in 𝑰, there is 

no edge between 𝑣1 and 𝑣2 in 𝐺. A maximum independent 

set in a graph refers to an independent set that includes the 

greatest possible number of vertices among all 

independent sets within that graph. A vertex cover 𝑪 of a 

graph 𝐺 is a subset of vertices such that for every edge 

𝑣1 − 𝑣2 ∈ 𝑬, we have one of the followings: 𝑣1 ∈ 𝑪, 

𝑣2 ∈ 𝑪, or {𝑣1, 𝑣2} ⊂ 𝑪. For a graph 𝐺, 𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑣𝑒𝑟(𝐺) 

represents the set of all vertex cover sets with respect to 

graph 𝐺. Minimum vertex cover is a vertex cover that 

minimizes the number of vertices needed to cover all the 

edges in the graph (See Figure 1 for different vertex cover 

sets of an example UCCG). In other words, a minimum 

vertex cover is the minimum number of nodes that we can 

select from a graph in which for any edge between two 

nodes in that graph, at least one of the nodes is in the 

minimum vertex cover set. 

2.3 Problem Definition 

In this manuscript, we are looking to calculate the 

minimum number of interventions which is needed for 

recovering the orientation of all undirected edges in an 

essential graph, in the passive setting. With this number 

of interventions, we can discover all undirected edges in 

an essential graph, regardless of what the orientation of 

underlying ground truth DAG is. In addition, we are 

looking for an algorithm to compare different algorithms 

in the passive setting, in terms of a number of 

interventions that they need to recover all undirected 

edges for any possible underlying ground truth DAG. 

After obtaining samples from a causal system, there are 

different methods to obtain the essential graph. There are 

constraint-based algorithms such as IC ([11]), PC and FCI  
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Fig. 1 Examples of different vertex cover sets: (a) a UCCG (G), 

(b) A minimum vertex cover set of 𝐺, (c) Another minimum 

vertex cover set of 𝐺, (d) A vertex cover set of G. Nodes in the 

circles represent the nodes in the respective vertex cover sets. 

([14]), or a score-based methods ([10], [1]). Chordal chain 

components of the essential graph can be obtained by 

removing all directed edges in the essential graphs. It has 

been proved that the orientations of edges within one 

chain component do not yield any insights into the 

orientations of edges in other chain components ([5]). 

Based on this, [6] has shown that intervening on the chain 

component is equivalent to intervening on the essential 

graph itself. Therefore, we can just focus on undirected 

chordal chain graphs (UCCGs). 

3 Proposed Approach 

In this section, we propose a method to calculate the 

minimum number of interventions which is needed to 

recover all the undirected edges in a UCCG in the passive 

setting. We prove that we need at least this number of 

interventions to recover all the edges, regardless of what 

the ground truth DAG orientation is. We provide a 

theorem that enables us to find the set of nodes for full 

recovery of orientations and we prove that the proposed 

set is optimal. This theorem is stated in subsection 3.1. In 

addition, we introduce an algorithm for identifying the 

optimal set of nodes. Taking advantage of the proposed 

theorem in subsection 3.1, we present another algorithm 

to compare different algorithms in terms of the number of 

interventions they must perform to recover all the 

undirected edges, without any knowledge of underlying 

ground truth DAG. We describe this algorithm in 

subsection 3.2. 
In this paper, we assume the availability of an infinite 

number of samples from both interventional and 

observational distributions. This assumption enables the 

exact recovery of the essential graph corresponding to the 

true causal DAG. 

3.1 Optimal interventions set 

In this section, we focus on the passive setting and we 

target to recover all of the undirected edges in a UCCG. 

Here, the goal is to recover any plausible underlying 

ground truth DAG with the optimal intervention set in 

terms of the number of interventions. Proposition 1 states 

that any set of nodes, which are superset or equal to a 

vertex cover of a graph, can recover all the undirected 

edges in that graph. 

Proposition 1. Given a UCCG 𝐺 =  (𝑽, 𝑬), and 

considering a passive setting for performing intervention, 

any set of nodes 𝑪 ⊆  𝑽 can recover all of the undirected 

edges in 𝑬, if and only if 𝑪 is a vertex cover of UCCG 𝑮. 

Proof. For “if” part, we should prove if we can recover 

all the edges by a set of interventions like 𝑪, then 𝑪 is a 

vertex cover. We prove this by contradiction. By 

contradiction, we know 𝑪 can recover all the edges, but it 

is not a vertex cover. As 𝑪 is not a vertex cover, we have 

at least one edge like 𝑣𝑘 − 𝑣𝑙 ∈ 𝑬 in which 𝑣𝑘 ∉ 𝐶 and 

𝑣𝑙 ∉ 𝑪. Now, assume that we have node 𝑣𝑙 as root in the 

underlying ground truth DAG. In this case, for recovering 

edge 𝑣𝑘 − 𝑣𝑙, we should intervene node 𝑣𝑘 or 𝑣𝑙. This is 

because none of the Meek rules are applicable in this case. 

However, we know that 𝑣𝑘 ∉ 𝑪 and 𝑣𝑙 ∉ 𝑪. Thus, we 

cannot recover this edge, which is in contradiction with 

the assumption of recovering all the edges. 

Now, we prove the “only if” statement by contradiction. 

By contradiction, after performing an intervention on 

every node in 𝑪, we will have at least one unoriented edge 

like 𝑣𝑖 − 𝑣𝑗 ∉ 𝑬. This implies that neither the 𝑣𝑖 nor the 

𝑣𝑗 are in 𝑪. Otherwise, after performing an intervention 

on 𝑪, the edge 𝑣𝑖 − 𝑣𝑗 ∈ 𝑬 should be oriented. However, 

this violates the definition of the vertex cover and the 

proof is complete.                                                           ∎ 

Proposition 1 states that intervention on one of the 

vertex covers of UCCG 𝐺 recovers all the undirected 

edges in E, in the passive setting. Having this, the next 

theorem states the minimum number of interventions that 

we need to recover all the undirected edges, regardless of 

the underlying causal DAG. Theorem 1 leverages 

Proposition 1 to provide the optimal intervention set for 

full recovery in the passive setting. 

Theorem 1 (Optimal intervention set). Given a UCCG 

𝐺 =  (𝑽, 𝑬), the set of minimum number of interventions, 

which is needed for recovering all of the edges in 𝑬, in a 

passive setting, denoted by 𝑰∗, can be obtained as follows: 

 

𝑰∗ ∈ argmin
𝑪∈𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑣𝑒𝑟(𝐺)

|𝑪| 

 

Proof. We need to prove that performing intervention on 

all the nodes in 𝑰∗, can recover any ground truth DAG in 
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the Markov equivalence class of 𝐺. Based on the 

Proposition 1, this statement holds, as any selected 𝑰∗ is a 

vertex cover. In addition, we must prove that 𝑰∗ is the 

minimum number of interventions required. This means 

that for any other set like 𝑰𝐹 that can recover any possible 

ground truth DAG in the Markov equivalence class of 𝐺 

by performing interventions on all the nodes in 𝑰𝐹, we 

have |𝑰∗|  ≤  |𝑰𝐹 |. Based on Proposition 1, any set like 𝑰𝐹 

that can recover all the DAGs in the Markov equivalence 

class of 𝐺 must be a vertex cover of 𝐺. Here, 𝑰∗ is a set 

with a minimum number of nodes that have been selected 

through all possible vertex cover on 𝐺. Thus, we have 

|𝑰∗|  ≤  |𝑰𝐹|.                                                                    ∎ 

Theorem 1 states that one of the minimum vertex covers 

of a UCCG like 𝐺 is enough for recovering all orientations 

in 𝐺. This theorem provides an exact lower bound on the 

number of interventions needed for recovering the 

orientations of all undirected edges in a UCCG in the 

passive setting. In addition to determining the number of 

interventions, this theorem also specifies the set of nodes 

for intervention. In this part, we want to propose an 

algorithm for obtaining the 𝑰∗. In [3], the author proves 

that we can find the minimum vertex cover for a chordal 

graph in a polynomial time. As any UCCG graph is a 

chordal graph, we take advantage of this result and 

propose the algorithm based on this to calculate the 

minimum intervention set by means of using the 

minimum vertex cover. We propose Algorithm 1 to 

calculate one of the minimum intervention sets of a 

UCCG 𝐺. We call this algorithm as the “optimal” 

algorithm. 

Algorithm 1 proposes a method to obtain the minimum 

vertex cover set in the UCCG G. In this Algorithm, in 

Line 4, we generate a DAG with the skeleton of UCCG 

𝐺. Please note that this generated DAG, 𝐷, can be any of 

the DAGs inside the MEC of G. Note that any algorithm 

can be used for generating DAGs, for example a rooted 

partition method in [15]. We label every single node in 𝐷 

in Line 5, according to the following mechanism. The 

greatest label is assigned to a node without any child. 

Then, we remove this node and all the parents of this 

node. In the next step, again, we find the node without any 

child. This node would be the second greatest number. By 

iterating on this node selection and removal, the source 

node gets labeled “1” and the sink node gets labeled “|𝑽|”. 

In Line 6, we initialize set 𝑴 by an empty set. From Lines 

7 to 12, we repetitively run some functions to find the 

minimum vertex cover. In particular, in line 8, we select 

the maximum label in the label set 𝑶 and put it in the 

variable m. In Line 9, variable 𝑱 is a set of all nodes which 

are neighbors of the node m. In Line 10, we remove the 

selected node m and the neighbor nodes from the set 𝑶. 

In Line 11, we put all the selected nodes m in each 

iteration of the while loop in the variable 𝑴. Please note 

that set 𝑴 is a maximum independent set and the 

complement of this set is the minimum vertex cover set. 

In Line 13, algorithm returns the minimum vertex cover 

set, which is the complement of the obtained set 𝑴 during 

the running algorithm. Please refer [3] for the proof of 

Algorithm 1. 

Example 1. We provide an example in Figure 2 for 

finding the optimal intervention set using the proposed 

Algorithm 1. Given a UCCG in 2(a), we generate a DAG 

in 2(b). We show the maximum independent set of the 

graph 𝐺, denoted by 𝑴, in 2(c). Figure 2(d) shows the 

minimum vertex cover set with circles around the nodes 

on UCCG 𝐺 which are in the optimal intervention set. In 

Figure 2(e), We summarize the values that different 

variables get by running Algorithm 1.  

In this example, we obtained three nodes for the 

minimum vertex cover set, which means at least three 

nodes need to be intervened for full identification. In 

Figure 2(f), we depict all the possible cases for selecting 

two nodes from six nodes. Every graph is a representative 

of one of those two nodes. We provide an example DAG 

for each of those in which we are not able to recover all 

the undirected edges in 𝐺. Blue lines in Figure 2(f) are 

the edges that cannot be recovered with the two selected 

nodes for the intervention in that specific DAG. 

In the next part, we propose an algorithm that gets an 

algorithm like 𝐴 as input and returns the number of nodes 

that algorithm needs for full identification in the passive 

settings. 

3.2 Algorithm Comparison 

In this section, we want to devise an algorithm which 

enables us to evaluate the capability of different 

algorithms. First, we explain the main purpose of 

Algorithm 1 Intervention set for full recovery in 

passive setting (𝑀𝑖𝑛𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑣𝑒𝑟(𝐺)) 

  1: Input: 𝐺 = (𝑽, 𝑬), where 𝐺 is a UCCG 

  2: Output: 𝑰∗ = 𝑀𝑖𝑛𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑣𝑒𝑟(𝐺) 

  3: Function 𝑀𝑖𝑛𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑣𝑒𝑟(𝐺) 

  4:      𝐷 ← 𝐷𝐴𝐺𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝐺) 

  5:      𝑶 ← 𝐿𝑎𝑏𝑒𝑙(𝐷) 

  6:      𝑴 ← {} 

  7:      While 𝑶 ≠ {} do 

  8:             𝑚 ← max (𝑶) 

  9:             𝑱 ← {𝑗 ∈ 𝑶\{𝑚}|𝑣𝑗 ∈ 𝑛𝑒𝑖𝑔ℎ(𝑣𝑚)} 

10:            𝑶 ← 𝑶\({𝑚} ∪ 𝑱) 

11:            𝑴 ← 𝑴 ∪ {𝑚} 

12:      End While  

13:      return 𝑽\𝑴 

14: End Function  
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evaluation. Consider an algorithm like 𝐴 in the passive 

experiment setting. After running algorithm 𝐴 on a given 

graph 𝐺, we obtain a set of nodes for intervention, called 

𝑻. There is no information on what the underlying ground 

truth DAG is. We perform single interventions based on 

the order in set 𝑻. For each DAG in the MEC of 𝐺, we 

need to perform different number of interventions in 𝑻 to 

recover orientations of all undirected edges in graph 𝐺. 

We want to know how many intervention steps we should 

take from algorithm 𝐴 to guarantee recovering all 

orientations in 𝐺, regardless of underlying causal DAG 

orientation. In the following, we propose Lemma 1 which 

selects such a minimum set from set 𝑻. We called this 

minimum set as sufficient intervention set, which is the 

subset of the proposed set of intervention nodes by 

algorithm 𝐴. 

 

Lemma 1 (Sufficient intervention set). Consider any 

algorithm 𝐴 that performs interventions in the passive 

setting on a given UCCG G, recovering all undirected 

edges in G. Then, the intervened nodes selected by the 

algorithm 𝐴 is a vertex cover set of UCCG G. 

Proof. Based on Proposition 1, we can recover any 

possible underlying causal DAG if the intervention set is 

a vertex cover.                                                                               ∎ 

The minimal set of interventions from the output of 

algorithm 𝐴, which is a vertex cover, is called as a 

sufficient intervention set. We propose Algorithm 2 
which selects the sufficient intervention set from the 

suggested intervention nodes by a passive algorithm. 

 

 

In Algorithm 2, |𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡(𝐴, 𝐺)| shows the number 

of interventions for full recovery for algorithm 𝐴 on graph 

Fig. 2 Example of computing minimum vertex cover using Algorithm 1: (a) A UCCG (𝑮). (b) A DAG based on the MEC of 𝑮. (c) 

maximum independent set of 𝑮. (d) minimum vertex cover set of 𝑮. (e) output of each iteration for running the algorithm. (f) set of 

all possible selections of two nodes for intervention, and one example DAG that we cannot identify completely with those two 

interventions. 
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𝐺. The better algorithm shows a lower value on the same 

graph 𝐺. Here, we explain Algorithm 2. In Line 4, we  

initialize set 𝑺, which is a sufficient intervention set to 

fully recover 𝑮. In Lines 5 to 8, we run the steps of 

Algorithm 𝐴, and we add the obtained nodes from 

Algorithm 𝐴 in each step to the sufficient intervention set 

𝑺. We terminate running Algorithm 𝐴, whenever 𝑺 is a 

vertex cover of graph 𝐺. 

4 Experiment 

In this section, we perform several experiments that 

compare the optimum intervention set in the passive 

settings based on our algorithm with two naive 

approaches. The ratio of the number of edges in the graph 

to the maximum possible number of edges for a certain 

size defines what we refer to as "edge density."  

4.1 Chordal graph generation 

In our experiment, we generated chordal graphs using a 

method described in [9]. For each point in our plot, we 

collected data from 150 instances of chordal graphs. 

4.2 Comparison 

In this part, we compared the optimal intervention set 

with intervention sets provided by two naive algorithms. 

In our experiment, each algorithm selects the intervention 

set first and then performs an intervention on every single 

node inside the intervention set. In particular, we 

compared our algorithm with the "Random" and 

"MaxDegree” algorithms. The "Random" algorithm 

chooses an intervention set through random node 

selection, and the "MaxDegree" algorithm selects 

intervention nodes based on node degrees. Nodes with the 

highest degree will be the first nodes that are going to be 

intervened. For both of these algorithms, we select an 

intervention set that has the same number of nodes as the 

graph. However, for the optimal intervention set, we are 

selecting the nodes for the intervention based on 

Algorithm 1. 

We compared our optimal proposed algorithm, with two 

baselines, in terms of the average number of 

interventions, which is shown in Figure 3. The average 

number of interventions for these three methods is given 

in Figure 3. The plots show the average number of 

interventions that we need to recover all possible 

orientations in the graph, in the passive setting. 

The left column in Figure 3 shows plots based on the 

different edge densities where we generated the chordal 

graphs with the number of nodes in the set 

{45, 65, 85, 105}. Experiments in the left column show 

that increasing the edge density will increase the average 

number of interventions that we need. In addition, we see 

that increasing the number of nodes increases the   

average number of needed interventions when the edge 

density is fixed. This is somehow expected because a 

dense graph needs more intervention to be recovered. The 

right column in Figure 3 shows different curves based on 

the different number of nodes. In each of these figures, we 

investigated the effect of increasing edge density when we 

have a fixed number of nodes in the graph. For achieving 

full recovery, increasing the edge density leads to a higher 

average number of interventions required. 

5 Conclusion 

In this paper, we focused on the computing optimal 

intervention set, in the passive experiment design problem 

which appears in many causal discovery tasks. We 

showed that any underlying causal DAG can be recovered 

with a specific intervention set in the passive setting if and 

only if the intervention set is a vertex cover for the graph. 

We considered just chordal graphs in our investigation. In 

addition, we provided an algorithm that enables us to 

evaluate different algorithms in terms of their capability 

to select a minimum number of interventions for 

recovering all the undirected edges in the graph, 

regardless of the orientation of the underlying ground 

truth DAG. Investigation of the same problem in the 

active setting is an interesting future research direction. 
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Fig. 3 Comparison of the average number of interventions which is needed for full recovery between Random, MaxDegree 

and Optimal algorithms. Left column shows the graphs with different edge densities, while the right column corresponds 

to graphs with different numbers of nodes. 

 


