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Permanent Magnet Motor Using Particle Swarm Optimization 
(PSO) 
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Abstract: In this paper a brushless permanent magnet motor is designed considering 
minimum thrust ripple and maximum thrust density (the ratio of the thrust to permanent 
magnet volumes). Particle Swarm Optimization (PSO) is used as optimization method. Finite 
element analysis (FEA) is carried out base on the optimized and conventional geometric 
dimensions of the motor. The results of the FEA deal to the significant improvement of the all 
objective functions. 
 
Keywords: Particle Swarm Optimization (PSO), Linear Brushless Permanent Magnet Motor 
Design, Optimization, Finite-Element Analysis. 

 
 
 
 

1 Introduction1 
The applications using high performance linear 
permanent magnet motors are continuously increasing 
because of their high efficiency and power density 
which are the result of using high performance 
permanent magnets [1]. In brushless permanent magnet 
(BLPM) motor, there is force ripple, which is 
detrimental to positioning. This force ripple is mainly 
due to cogging force and mutual force ripple. In linear 
PM motor, there are two components of cogging force, 
one is tooth ripple component, which also exist in rotary 
motor, and the other is end effect component, which 
exists only in linear motor and is caused by finite length 
of the armature [2]. 

The methods for minimizing of the force ripple and 
maximizing thrust density have been studied by many 
researchers. A simple method for reducing the force 
ripple is the elimination of one or more harmonics by 
adjusting the width of the PM pole as well as its 
symmetrical shape [3]. However, this method may 
reduce the force density of the PM pole and the machine 
thrust, since they are influenced by the pole width too. It 
means that the PM material of the PM pole has not been 
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used wisely. This is also not economic. Another method 
is the use of a PM pole consisting of PM pieces of 
different heights. However, this PM pole, when used in 
a PM machine, causes non-uniform machine air gap and 
results in audible noise and air resistance leading to 
deterioration of the machine performance and 
efficiency. This method also requires PM pieces with 
different dimensions, which in turn increase the pole 
manufacturing complexity and cost. The third method, 
which is more common, is the shaping of PM pole 
corners to build a pole with trapezoidal shape or 
curvature corners [4-7]. This method also increases the 
complexity and the cost of manufacturing. Moreover, 
the full potential of PM machine in developing thrust or 
torque is not utilized. Other methods have also been 
presented in the literature such as the divided PM poles 
and asymmetric PM poles [8-11]. However, all these 
methods suffer from a reduction in the torque or thrust 
density and non-uniform air gap, respectively. 

In this paper a new evolutionary optimization 
algorithm is used to optimize three different cases 
simultaneously. At first just thrust ripple of the motor is 
minimized. In the second case, the improving of the 
ratio of the average thrust to magnet volume (thrust 
density) is considered as an objective function. Finally, 
a multi-objective optimization is carried out. In this case 
both thrust ripple and thrust density are optimized and 
the air gap length (g), magnet width (wPM) and magnet 
height (hPM) are used as optimization variables. In order 
to avoid of collapsing thrust average in optimization 
process, the nominal thrust is added to the constrain list. 
Finally, finite-element method (FEM) is used to verify 
the optimization results. 
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2  Machine Model 
2.1  Geometrical Structure 

Geometrical structure of linear BLPM motor is 
depicted in Fig. 1 [2]. In the motor which shown in Fig. 
1 the armature has iron core with a three phase winding. 
Surface mounted Permanent magnets are placed on the 
stator. 

 
2.2  Electromagnetic Model 

In order to simplify the field analysis, two-
dimensional model is adopted to air gap and magnet, 
and permeability of iron core and stator is assumed to be 
infinite, therefore flux density has only the normal 
component at the surface of iron core and stator [2]. Fig. 
2 shows simplified analytical model for analysis of 
magnet and air gap fields. 

Table 1 shows the geometrical parameters of the 
linear BLPM motor [2]. 
 
 

 
Fig. 1 Geometrical structure of linear BLPM motor [2]. 

 
 
 

Table 1 The parameters of original motor [2]. 

Parameter Unit Value 

Pole pitch (τ) mm 24 

Motor width (L) mm 50 
Motor length (lA) mm 163.2 
Number of phases - 3 

Pole pair (P) - 3 
Number of Coil/Phase/Pole (q) - 1 
Air gap (g) mm 3 

Magnet Height (hPM) mm 3 
Magnet width (wPM) mm 17.5 
Number of slots (Qs) - 18 
Slot pitch (τs) mm 8 
Slot depth (ds) mm 4 
Ratted current (I) A 1 

Magnet 
characteristic 

Br T 1.09 

BD  T -0.2 

Hc kA 800 

Current density A/mm2 5 
Maximum analytical force N 68 
Synchronous velocity m/s 2.1 

 

 
Fig. 2 Simplified analytical model [2] 

 
Solving Laplace and Poisson equations in each layer 

gives flux density (B) and field intensity (H) in each 
point. In the air gap region, the Laplace's equation is [2]: 
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In the magnet region, the Possion's equation is [2]: 
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where AI and AII are magnetic vector potential of the 
each region, µM is permeability of magnet and JM is 
distribution of current density in current sheet model, 
which generates equivalent magnetic field of the 
magnets [2]. 

Using the curl of vector potential solution with 
boundary condition, the flux density distribution on the 
iron core of armature is calculated and modified by the 
slot on the iron core of armature. So the flux density 
distribution modified by the slot is given by [2]: 
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(4)

where g is an air gap length, hM is a height of magnet, 
rs(x) is the function of x, τ is a pole pitch, η is a ratio of 
magnet width to pole pitch, τs is a slot pitch and Qs is 
the number of slot [2]. 
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The cogging force is obtained by integrating 
Maxwell stress tensor along the slot face on the iron 
core of armature. From the flux density distribution 
obtained in (3), the normal and tangential forces acting 
on each surface of the armature are given by [2]: 
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By assumption, flux density distribution has only the 
normal component at the surface of iron core. So, there 
is only normal force. The tooth ripple component of 
cogging force is calculated by summation of normal 
force at each slot area. The end effect component of 
cogging force is calculated by summation of normal 
force at two end of iron core [2]. 

The mutual force is obtained by summation of static 
thrust of the each one phase and expressed in (6) [2]: 

T
wvuwvuf ]BBB][III[KF =  (6) 

where Kf is a force constant, Iu, Iv, Iw are a current of 
each phase and Bu, Bv, Bw are a flux density of each 
phase. 
 
3 Optimization 

3.1 Objective Function Selection 
As mentioned before one of the most important 

drawbacks of the linear BLPM motors is the thrust 
ripple. So, in this paper one of the objective functions is 
the minimization of the thrust ripple. To do this the total 
harmonic distortion (THD) of the normal component of 
the flux density is chosen as a cost function [12-13]. 
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By minimizing this objective function, the force 
pulsations would be minimized. Another important 
subject in linear BLPM motors is maximization of the 
average thrust. Since this improvement may cause an 
increase in permanent magnet volume which leads to an 
increase in the cost of the motor. So that, we chose the 
ratio of the average thrust to the PM volume as the 
second objective function. At least, a multi-objective 
optimization is discussed and both thrust ripple and 
thrust density improved. 

Design variables are air gap length and magnet 
dimensions (magnet height and magnet width). In this 
paper the general form of the objective function is 
proposed as: 
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where THD, Fav and VPM are total harmonic distortion, 
motor thrust and permanent magnet volume 
respectively. The parameters m and n are cost powers 
and are chosen by designer to determine the importance 
of each objective functions. Optimization is carried out 
for different values of cost powers. Finally three sets of 

the power coefficients are used to optimize the motor. In 
the first step, only the THD is minimized (m=1, n=0), in 
the second step just thrust density is maximized (m=0, 
n=1) and in the last step both thrust ripple and thrust 
density are improved by choosing m=n=1. 

A number of constraints can also be taken into 
account during the optimization to prevent the 
possibility of reaching unrealistic optimization results. 

The magnet height is limited by a lower bound to 
prevent demagnetization and to provide a minimum 
required force. The air gap is also limited because a 
large air gap leads to a reduction in the motor force. A 
small air gap, on the other hand, causes mechanical 
faults and manufacturing difficulties. The PM 
dimensions are also bounded by a lower limit to have an 
acceptable force density and their upper limit leads to an 
increase in PM volume [3]. The list of the numerical 
values of the constraints is presented in Table 2. The 
minimum value of the average thrust in the optimization 
algorithm is equal to its nominal value of the non-
optimized motor. Therefore, we can be sure that the 
thrust of the motor has not been deteriorated. 

Figure 3 shows the variation of objective functions 
versus design variables. THD shows a different pattern 
of variation with PM dimensions (Fig. 3-a). The thrust 
density (the ratio of the thrust to the PM volume) 
decreases with the increase of the magnet dimensions 
(Fig. 3-b). It can be concluded that the objectives do not 
have a simple common optimal point. In fact, meeting 
an objective may accompany the deterioration of other 
objective.  

Figures 3-c and 3-d show the variations of objective 
functions with the air gap length when the magnet width 
and height are constant. Both THD and thrust density 
reduce with an increase in air gap length. 

 
Table 2 Design Constrains [1].  

Parameter Sym
bol 

Mi
n 

M
ax 

Air gap length [mm] g 0.7
5 

3 

Magnet Width [mm] wPM 12 24 
Magnet height  [mm] hPM 1 3 
Thrust force [N] Fav 29.

44 
- 

 
 

3.2 Optimization Method 
Particle Swarm Optimization is an evolutionary 

computation algorithm developed by Kennedy and 
Eberhart in 1995 [14]. PSO mimics the social behavior 
of a flock of birds where information is shared among 
the individuals of the population. It starts with an initial 
swarm of random particles in the search space where 
each particle is also assigned a randomized velocity. 
The velocity of each particle is dynamically updated 
based on the particle’s best previous position reached 
and the best position reached among previous 
generations [14]. 

The position and the velocity of a particle in a PSO 
algorithm is updated at each iteration towards its Pi and 
Pg positions according to (9) and (10): 
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(a) Variations of THD with magnet dimensions. 
 

 

(b) Variations of thrust density with magnet dimensions. 
 

(c) Variations of THD with air gap. 
 

 
(d) Variations of thrust density with air gap. 

Fig. 3 Variation of objective functions versus design variables. 
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where w is inertia weight, c1 and c2 are acceleration 
constants, and rand() is a random function in the range 
[0, 1]. The first term in (9) represents the inertia of 
previous velocity, the second is the “cognition” part 
which represents the private thinking of a particle, and 
the third term is the “social” part which represents the 
sharing of information among the population. The 
velocity of each particle is limited by Vmax when the 
updated velocity exceeds this value. Vmax is determined 
by the user and represents the resolution of the search 
process between the present position and the target 
position [14]. The flowchart of this algorithm is shown 
in Fig. 4. More details about this algorithm are 
presented in [14]. 

In this paper the objective function of the 
optimization problem is (8). Optimization variables are 
the height of magnet (hm), Magnet width (WM) and air 
gap length (g) with constrains mentioned in Table 2. 

 
4  Results 

The method described in section 3-2 is used to 
optimize the design of a typical linear Brushless 
permanent magnet motor with specifications as 
presented in Table 1. Optimization is done in three 
cases, resulting different designs. These cases are 
explained in section 3-1. 

Design variables in these cases are listed in Table 3. 
Table 4 and Fig. 5 show the characteristics of motor in 
the different optimization problems and those of typical 
motor. 

It can be seen in Table 4 and Fig. 5 that the typical 
motor has the efficiency of 90.59%, thrust and THD of 
29.44 N and 4.89% respectively. The ratio of thrust to 
PM volume in this motor is 0.57 N/Cm3.  

Optimal design 1 carried out just considering the 
THD of Bys as objective function. In this optimization 
THD is reduced almost 58.40% with respect to the 
typical motor. The thrust density, thrust force and 
efficiency are modified almost 29.82%, 9.95% and 
0.61% respectively.  

In optimal design 2 we just optimized thrust density. 
Results shows motor thrust density has improved more 
than 440% and increased to 2.51 N/cm3. At the same 
time efficiency and thrust are constant. In contrast, The 
THD deteriorated almost 364% (has increased to 17.82 
in this case). 

In optimal design 3 thrust density and thrust ripple 
are simultaneously considered in the objective function 
by deciding nonzero values for m and n in (8).  

In this case, the results of the design optimization 
show that motor thrust has improved 9.85%. This multi-
objective optimization provides a design with almost 
70.38% less thrust ripple (THD) and 29.82% more 
thrust density with respect to the typical motor, while 
the efficiency is increased almost 0.61% too. This 
proves that proposed optimization method is 
effectiveness in optimizing all of the objective functions 
simultaneously. 
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Fig. 4 Flowchart of the particle swarm optimization (PSO) 
[14]. 

 
 

Table 3 Dimensions of optimized motor for different 
objective functions. 

Parameter 
Typic

al 
motor 

Optimal 
Design 1 

Optimal 
Design 2 

Optimal 
Design 3 

m=1, n =0 n=1, m=0 m=n =1 
Air gap 

length (mm) 3 2.20 0.75 2.18 

Magnet 
Width (mm) 17.5 19.70 12 19.61 

Magnet 
height  (mm) 3 2.28 1 2.27 

 
Table 4 The characteristics of optimized motor. 

Parameter 
Typic

al 
motor  

Optimal 
Design 1 

Optimal 
Design 2 

Optimal 
Design 3 

m=1, n 
=0 

n=1, 
m=0 m=n =1 

THD (%) 4.89 2.856 17.82 2.87 
Thrust/PM Vol. 

(N/Cm3) 0.57 0.74 2.51 0.74 

Thrust Force (N) 29.44 32.37 29.44 32.34 
Efficiency (%) 90.59 91.14 90.59 91.14 
 
 

5 Design Evaluation 
To verify the results of optimization, it is important 

to use a finite element simulation. The optimization is 
carried out based on the analytical model of the motor. 
This model is presented in section 2 and evaluated by 
using some simplifications such as limited motor length. 
So, 2-D nonlinear FEM is employed to validate the 
model. 

A flowchart of the FEM is shown in Fig. 6. Fig. 7 
shows a graphical representation of the flux lines and 
flux density distribution in the typical motor and 
optimal design 3. Fig. 8 and 9 show the flux density 
distribution in motor length for the mentioned designs. 
It can be resulted from Fig. 10 that the flux density of 
optimal design 3 is more near to sinusoidal one and it 
leads to less THD for optimal design 3. 
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Fig. 5 The characteristics of the typical and optimized motors. 

 
 

 
Fig. 6 Flowchart of FEA [3]. 
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(a) flux lines in typical motor 
 

(b) flux lines in optimal design 3  
 

(c) flux density distribution in typical motor 
 

(d) flux density distribution in optimal design 3 
 

Fig. 7 Flux lines and flux density distribution in the linear 
BLPM motors. 

 
 

 
Fig. 8 Flux density distribution in typical motor. 

 
Fig. 9 Flux density distribution in optimized motor. 

 
 

 
Fig. 10 Flux density harmonics. 
 
 
6 Conclusions 

The advantages of the linear brushless permanent 
magnet motors cause their increasingly uses in various 
applications. But, thrust ripple and thrust density are the 
main disadvantages of these motors which need 
optimization. In this paper a multi-objective 
optimization method based on particle swarm 
optimization (PSO) is used. At first, the optimal 
dimensions of the permanent magnet and air gap length 
are calculated by PSO to minimize the thrust ripple. 
Then, another objective function (thrust density) is 
considered to be maximumized. The mentioned search 
algorithm calculates the best answers for improving the 
ratio of the thrust to the permanent magnet volume. 
Finally, a multi-objective optimization is carried out and 
the best dimensions are searched to minimize thrust 
ripple and maximize the thrust density, simultaneously. 
The results of the analysis show that motor thrust has 
improved 9.85%. It means, this multi-objective 
optimization process provides a design with almost 
40.83% less thrust ripple (THD) and 85.42% more 
thrust density with respect to the typical motor while the 
efficiency is increased almost 0.59% too. This proves 
the effectiveness of the used optimization method in 
simultaneously optimizing all the objective functions. 
Finally, finite element simulation verified the results. 
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