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Closed-Form Analytical Equations to Transient Analysis of 
Bang-Bang Phase-Locked Loops 
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Abstract: In this paper an exact transient analysis of Bang-Bang PLLs (BBPLLs), as a 
nonlinear system, is presented. New equations are proposed for expression of transient 
behavior of the BBPLL with first order filter in response to phase step input. This approach 
gives new insights into the transient behavior of BBPLLs. Approximating transient 
response to reasonable specific waveform; the loop transient time characteristics such as 
locking time, peak time, rise time and over shoot are derived with acceptable accuracy. The 
validity of the resulted equations is verified through simulations using MATLAB 
SIMULINK. Simulation results show the high accuracy of the proposed method to model 
BBPLLs behavior. 
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1 Introduction1 
The use of bang-bang phase locked loops has become 
increasingly common in a lot of communication 
systems, especially in clock and data recovery (CDR) 
systems [1]-[4]. Also these types of PLLs are widely 
used at the higher speed process. These systems use a 
bang-bang phase detector (BBPD) in the loop, which 
samples data as a part of the phase detection process, 
therefore there exists no systematic phase error between 
the data signals and the recovered clock signals. BBPD 
quantizes the phase error between input (data) and 
output (clock) with 1-bit resolution. For this reason, 
these types of the PLLs suffer hard nonlinearity. This 
behavior of the BBPLLs causes that the researchers 
make an effort to analyze it. BBPLL circuits must 
satisfy some specifications such as speed, stability, 
capture range and phase noise, posing challenges to 
system designers. Most researches focused on jitter 
analysis (see [5]-[10]) but there exists a few researches 
on the transient analysis. Design of the BBPLL in 
higher speeds is the most important reason to analyze 
the BBPLL in time domain. Transient behavior of a 
BBPLL in response to the phase and frequency step 
inputs is a main issue in time domain that this paper has 
focused on phase step response. Because of the 
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nonlinear behavior of the BBPLL, these inputs cause 
responses with two different general forms depending 
on the input step size. Some simple equations have been 
presented to express the locking time of the BBPLL in 
[11] and [12]. These equations are limited only for 
particular conditions which is called cycle slipping. 
These researches are focused on the frequency step 
response. Also there exists no expression for other 
features of transient time; rise time, peak time, settling 
time and over shoots. 

This paper presents a novel method to derive the 
closed form equations to clarify the transient behavior 
of the BBPLLs. In this method a parameterized 
waveform of the output excess phase is estimated and 
equations for unknown parameters are derived using 
differential equations governing on the BBPLL. 

The rest of the paper is as follows: Section 2 
introduces BBPLL model with first order filter and a 
brief review of the existing methods. Section 3 
describes the proposed methodology to derive the 
equations for locking time, peak time, rise time and over 
shoot. A new technique based on an estimated model for 
output is presented to derive equations for transient 
response in this section. Simulation results will show 
validity of this method in section 4. Finally, section 5 
gives conclusions. 
 
2  BBPLL with First Order Filter 

Consider two cases of the BBPLL; BBPLL with 
zero order filter and BBPLL with first order filter. 
References [2] and [5] have illustrated the operation of 
these two cases clearly. Due to the low speed and small 
capture range of the BBPLLs with zero order filter, their 
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Fig. 1 BBPLL architecture with first order filter 
 
use is very limit [2]. In contrary, the BBPLL with first 
order filter is noticeable. Figure 1 shows a BBPLL with 
first order filter. This structure adds an integral path to 
the loop filter of the system. This integral path provides 
bigger capture range and makes the loop faster. Because 
of these compelling advantages, the bang-bang loop 
with first order filter has become a common design 
choice for state-of-the CDR designs. For this reason, in 
this paper, we have focused on the BBPLL with first 
order loop filter used as a CDR. 

As mentioned above, the purpose of this paper is to 
derive the all information of the transient time. At first, 
the previous works are briefly discussed. Only reference 
[2] has indicated phase step response of the BBPLL by 
phase trajectory with discrete time difference equations 
for BBPLL with first order filter as (1). 

In above equation ( )θ t refers to excess phase 
difference, θbb  indicates loop phase step that equals to 

p p vco update2 I R K tπ and updaten t t= ⁄ and 
update ct 1/ f= . cf  is the 

central frequency of VCO. A stability factor, ξ  is 
defined in (1) which equals to p p update2R C t⁄  and a 
normalized transient phase step as step bbΔ = θ ⁄θ . In 
equation (1), the time required to reach steady state, 
given a step of Δ  is always less than or equal to Δ  time 
steps, independent of ξ  [2]. The resulted phase 
trajectories show changes of oscillatory transient for the 
different values ofξ . These trajectories don't express 
the details of transient behavior of the BBPLL, because 
there are no equations to indicate features of transient 
time. Therefore it is critical to analysis the BBPLL in 
time domain and extract all important times. 

Consider a BBPLL with first order filter shown in 
Figure 1. The BBPLL consist of a BBPD, charge pump 
with current Ip, a loop filter with resistance Rp and 
capacitor CP connected series, and voltage controlled 
oscillator (VCO) with gain KVCO. The output voltage of 
bang-bang phase detector pdv (t) provides a binary form 
of voltage as in outsign( (t) (t))ϕ −ϕ  where it has indication 

of the phase difference between the input (data) and the 
output (clock). The parameters in (t)ϕ  and out (t)ϕ  refer to 
phase of input signal and the output signal of VCO, 
respectively. pdv (t)  is 1+  when the phase difference is 
positive and 1−  when phase difference is negative. 

pdv (t)  is shown as (2).

 
pd in outv (t) sign( (t) (t))= ϕ − ϕ  (2) 

when pdv (t)  is 1+ , pI charges the loop filter and when 
is 1− , discharges the loop filter. This model is the same 
BBPLL discussed in [4] and [5]. To introduce BBPLL, 
at the first we express the basic equations governing on 
the BBPLL. Note that the VCO used in Figure 1 is 
assumed linear. So we can write equation (3) for VCO. 

out c vco cot(t) k v (t)ω = ω +  (3) 

where out (t)ω , cω and cotv (t) refer to the output 
frequency, VCO central frequency and control voltage 
of VCO, respectively. 

In the BBPLL based CDR, with the input data signal 
shown in Figure 2, in the steady state or locked 
condition the output phase (frequency) is twice of the 
input phase (frequency) [1]. So when the input phase 
(frequency) changes from its steady state condition, the 
PLL experiences a transient time and the output phase 
(frequency) reaches to a new steady state; twice of the 
input new phase (frequency). So in locked condition, the 
output phase (frequency) is twice of the input (data). So 
in locked condition at the VCO central frequency cω  
(nominal condition), we consider the input frequency 
equal to 2cω /  in equations governing on the BBPLL. 

Figure 2 shows the input data and cock data with a 
phase error. It is seen from Figure 2 that the frequency 
of clock is twice of input data frequency. Using the 
relation between phase and frequency as (t) (t)dtϕ = ω∫  

and introducing the phase step as inΔϕ , we can write the 
set of following equations for BBPLL. Input phase and 
output phase are defined as (4) and (5). 

c
in in in in(t) (t)dt u(t) t u(t)

2
ω

ϕ = ω + Δϕ = + Δϕ∫              (4) 

out out c vco cot(t) (t)dt t 2 k v (t)dtϕ ω ω π= = +∫ ∫                 (5) 
Since at the nominal steady state, the phase error, 

( ) ( )in outt tϕ −ϕ , is zero, we express the dynamical 
 
 

 
Fig. 2 Input (data) signal and output (clock) signal 
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equations of the BBPLL in term of the excess phases. 
So ( )inu tΔϕ is the input excess phase denoted by , ( )in ex tϕ  

and cot ( )vcoK v t dt∫  is the output excess phase, denoted 

by , ( )out ex tϕ . So excess phase error is written as (6). 

e in,ex out,ex

in vco cot

(t) (t) (t)

2 k v (t)dt

ϕ = ϕ −ϕ

= Δϕ − π ∫
 (6) 

After locking, as mentioned above, the output phase 
is twice of the input, so according to (4) and (5), we 
have (7). 

c
c vco cot int 2 k v (t)dt 2( t u(t))

2
ω

ω + π = + Δϕ∫  (7) 

As we know, in the locked condition, the output 
frequency is twice of the input. Using this point along 
with equation (7), (6) should be rewritten as (8). 

e in vco cot(t) 2 2 k v (t)dtϕ = Δϕ − π ∫  (8) 

Or we can consider a factor of 1/2 for output excess 
phase ( cot ( )vcoK v t dt∫ ) instead of factor of 2 for input 
excess phase (

inu(t)Δϕ ) in equation (8). Equation (8) 
guaranties that e (t) 0ϕ = is equal to the locked 
condition. This also can be investigated and verified 
using simple simulations. 
 
3 Proposed Method 

3.1 General Procedure of the Proposed Method 
The method proposed in this paper is based on the 

exact differential equations governing on the BBPLL. 
These equations are simply obtained using circuit 
analysis methods and the equations (1) to (8). At the 
beginning, we obtain cotv (t)  by analyzing Figure 1 as 
(9). 

p e
cot p p e

p

I sign( (t))
v (t) R I sign( (t)) dt

C
ϕ

= ϕ + ∫  (9) 

In equation (9), the term esign( (t))ϕ  is the role of 
phase detector output on the filter charging current that 
is in the form of

 p p p pR I (I / C )t± ± . 
To derive the differential equation of cotv (t) , we 

need to define pdv (t).  
As mentioned before, the output  voltage  of  BBPD 

( pdv (t) ) is as a sign function, this  function imposes a 
hard nonlinearity on the loop. To overcome this 
problem, we introduce a proper function instead of sign. 
Because of discontinuity of sign at zero,  we suggest 
replacing sign with another function which is 
continuous and also is very similar to sign function. So 
it is possible to apply integral and derivative operators 
on it. Among different alternatives, trigonometric 

functions such as etanh( (t))αϕ  and earc tan( (t))αϕ are 
selected, because these functions are more similar to 
sign function. See Figure 3, when α is increased 

extanh( (t))αϕ  converges to sign function. α is an input 
parameter. By changing α, we can make an acceptable 
approximation for sign function. We solve equation (9) 
by replacing sign function with extanh( (t)).αϕ  

Substituting (8) into pdv (t)  and pdv (t)  into (9) and 
finally differentiating both sides of (9), results in 
differential equation of cotv (t)  as follows: 

cot

2
p p in vco cot X

p
vco cot in vco cot

p

dv (t)
dt

I .R (1 tanh ( .(2 2 K v (t).dt)))

I
( 2 K .v (t)) tanh( (2 2 K v (t).dt))

C

=

α. − α Δϕ − π μ

× − π + α. Δϕ − π

∫

∫

 

            (10) 
To solve (10), consider the set of following 

equations in state form:  
1 vco cot

2 cot

1
vco 2

x (t) 2 K v (t)dt

x (t) v (t)
dx (t)

2 K x (t)
dt

= π

=

= π

∫
 (11) 

Substituting the above equations into (10), result in a 
differential equation as 

22 1
p p in 1

p
in 1

p

dx (t) dx (t)
I .R (1 tanh ( .(2 x (t)))).( )

dt dt
I

tanh( (2 x (t)))
C

=−α. − α Δϕ −

+ α. Δϕ −
 (12) 

x2(t) refers to the control voltage of oscillator and x1(t) 
indicates the output excess phase. To evaluate the effect 
of approximation of extanh( (t))αϕ  on the behavior of the 
system, we numerically solved the equation (12) in 
 

 

 
Fig. 3 etanh( (t))αϕ function compared with sign.
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MATLAB. Figure 4 (a) illustrates output excess phase 
and (b) shows the excess phase error ( in 12 x (t)Δϕ − ). 
The simulation results show the equation mentioned in 
(12) models the system behavior with acceptable 
accuracy. Since (12) is a nonlinear equation, the direct 
solution of  the system is very complicated. So we 
introduce an approximate method. 

Based on what reported in the previous works and 
many simulations performed (Fig. 4), we found out that 
the output excess phase transient has a well defined 
shape that can be simply approximated by an analytical 
function. 

We solve equation (12) by fitting a reasonable 
waveform for 1x (t) . In a BBPLL, before applying a 
phase step ( inΔϕ ), the output excess phase ( 1x (t) ) is 
zero, according to what mentioned before, if a phase 
step enters, 1x (t) reaches a constant value ( in2Δϕ ) after 
the oscillatory transient and after the locking point, the 
final value does not change, (see Fig.4). So we consider 
a damping oscillatory waveform as (13) to model the 
output excess phase. Equation (13) is the key 
simplifying assumption that leads to straightforward 
analysis along with accurate results. Equation (13) could 
be considered as an initial simple estimation for output 
excess phase response, it is necessary to improve the 
approximate solution using a simple approach. 
Assuming this, the analysis is devoted to find d, a, and 
b. 

Regarding (12), it is necessary to find 1dx (t) dt/ and

2dx (t) dt/ . Based on the equations indicated in (11) and 
(13), 2dx (t) dt/ and 1dx (t) dt/ can easily be obtained as 
(14) and (15), respectively shown at follows: 

2

at 2 2

vco
at 2 2

dx (t) dt
d (e sin(bt)( 2ab a b )

2 K

e cos(bt)( a b 2ab))

−

−

/ =

− − +
π

+ − + +

 

(14) 

1
at at

dx (t) dt

de sin(bt)(b a) de cos(bt)(a b)− −

/ =

+ + −
 (15) 

Using bit mathematical operations, (12)-(15) can be 
combined and equation (16) is resulted; the basic 
trigonometric equation of the proposed method. 

at 2 2 at 2 2

vco

d (e sin(bt)( 2ab a b ) e cos(bt)( a b 2ab))
2 K

− −− − + + − + +
π

2 at at
p p inI .R (1 tanh ( .(2 d(1 e cos(bt) e sin(bt)))))− −= −α. − α Δϕ − − −

at atde sin(bt)(b a) de cos(bt)(a b)− −× + + −  
p at at

in
p

I
tanh( (2 d(1 e cos(bt) e sin(bt))))

C
− −+ α. Δϕ − − −  

(16) 
Equation (16) holds for every time especially for the 

special times that we have: 
t →∞⇒ a.te cos(b.t) 0− = a.te sin(b.t) 0− =  (17) 

at ate sin(bt) e cos(bt)− −= −  (18) 

t 0= ⇒          
a.te cos(b.t) 1− = a.te sin(b.t) 0− =  (19) 

The special times used above make it very simple to 
find the fitting parameters. Indeed these times leave 
simple equations to solve. 

Substituting equation (17) into (16), we can find 
equation (20) for parameter d in term of input phase 
step. 

intanh( (2 d)) 0α. Δϕ − = ind 2⇒ = Δϕ  (20) 

 
 
Fig. 4 Numerical Solution of the Eq. (12) for Δφin= 1 rad. compared with simulation. (a) Output excess phase. (b) excess phase error. 
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when the BBPLL is locked, the final value of output 
excess phase can be calculated by (20). 

Substituting (18) into (16), a closed form equation is 
derived for parameter a in term of circuit parameters as 

p p vco2 I R K
a

2
π α

=  (21) 

It can be seen from (21) that the parameter a is 
directly proportional to pI , pR , vcoK  and input 
parameter α . 

To obtain b,  we  assume  that  the  left  side  of (16) 
( 2dx (t) dt/ ) is as (22). 

In added exponential term, β is so large. This 
assumption is used to provide a proper initial condition 
for the left side of (16) (equation (14)) at t 0= . Note 
that this assumption has no effect on other equations 
indicated in (20) and (21), it just leads to an appropriate 
response for parameter b. Considering assumption of 
(22) and substituting (20) in (16), we have 

2 2 2
p p vco ind(b 2a ) 2 I .R K (1 tanh (2− = − πα. × − αΔϕ

p vco
in

p

I K
d(a b) 2 tanh(2 )

C
× − + π αΔϕ  

 

(23) 

Since tanh(2 ) 1inαΔϕ ≈   and knowing a and d, a 
closed-form equation for unknown parameter b can be 
derived as (24). 

p vco 2

p

2 I K
b 2a

dC
π

= +  
(24) 

It can be seen from (24), b is a function of circuit 
parameters and input phase step.  

To calculate d, a and b, we need to define the 
parameterα . As mentioned before, intanh(2 )αΔϕ   is 
approximately equal to 1+ . We assume 

intanh(2 ) 0.99999αΔϕ =   that results in (25) for 
parameterα . 

in3α = /Δϕ  (25) 

For simplicity, we assumed,α only depends on the 
input step. The expression (25) can help to find a proper 
α for each value of inΔϕ . The simulation results verify 
the accuracy of (25). 

The closed form equations obtained in this section 
can represent the unknown parameters a, d and b just 
knowing the circuit parameters and the size of phase 
step input. 
 

3.2  Transient Features of BBPLL 
In previous section, we have approximated a 

mathematical model for output excess phase in response 
to phase step input. This model has been shown in (13). 

To describe the transient behavior of the BBPLL, we 
need to know the features of its transient time such as 
rise time, over shoot, peak time and settling time. 
Equation (13) is similar to the step response of a linear 
second order system (see Fig. 4(a)). According to [14], 
we can easily rewrite (13) as (26). 

at
1x (t) d(1 2e sin(bt ))

4
− π

= − +  (26) 

Using what mentioned in [14], the transient features 
of (26) can be easily obtained as following equations. 
Rise time can be written as (27). 

rt b
π−θ

= r
3t

b
π

⇒ =
4

 (27) 

where 4θ = π/ . Equation (27) shows that the rise time 
is reversely proportional to parameter b. Also as 
illustrated in [14], the peak time can be defined as (28). 

The peak time presented in (28) is also reversely 
proportional to b. And finally the over shoot is found as  

From (29), it is seen that the over shoot is function 
of a and b. If we consider the tolerance, %5, hence the 
settling time can be derived as (30). 

The settling time presented in (30) is reversely 
proportional to a. Resulted equations can manifest the 
transient behavior of the BBPLL clearly.  

This method can describe the transient behavior of 
BBPLL for each input phase step and different values of 
design parameters. The proposed method in this paper 
can help BBPLL designers to design a BBPLL with 
higher speed and more stable in transient region. 
 
4 Simulation Results 

The proposed method to obtain the features of the 
BBPLL is evaluated by simulations for different values 
of input phase step inΔϕ , current Ip, resistance Rp, 
capacitor Cp, and Kvco. 

In this paper a BBPLL based CDR with an 
Alexander PD is simulated in MATLAB simulink. A 
numerical method using MATLAB software is used to 
solve (12) for the case that inΔϕ  increases. Figure 5 (a) 
to (d) show the numerical and approximated solution of 
Eq. (12), and simulated results of output excess phase, 
when inΔϕ  increases. Figure 5(a) to (d) show results 
with different values of inΔϕ = 0.8 rad, 1.0 rad, 1.2 rad 

2
t2 2

new old vco

dx (t) dx (t) 2ab ad e
dt dt 2 K

−β+
= −

π
 (22) 

1
p

dx (t)t 0
dt

= = pt
b
π

⇒ =  (28) 

a
1 p 1 b

p
1

x (t ) x ( )
M e

x ( )

π
−− ∞

= =
∞

 (29) 

s
3t
a

=  (30) 
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and 1.5 rad, respectively. First, the value of α  is 
calculated for each phase step using (25). In second step 
the unknown parameters of the estimated output are 
calculated by (20), (21) and (24). Finally the transient 
features rt , pt , pM , and st are calculated by (27)-(30). 
Expression (25) shows, each phase step results oneα , 
this shows that the parameter a obtained in (21) depends 
on the input phase step; consequently, b is depended on 
the input phase step. Therefore all important times in 
transient region depend on the input phase step. Table 1 
gives simulation parameters. A comparison between 
estimated and real values shows the accuracy of 
analytical equations. Estimated results and actual 
undergoes the variation of input phase step are given in 
Table 2. The numerical, estimated and simulation 
results presented in Table 2 and Figure 5 show, when 

inΔϕ  increases, the rise time, peak time, settling time 
and over shoot increase and this is exactly what we 
expect in the BBPLL. 

Based on the presented plots and Table in this paper, 
the difference between precise and approximate 
solutions for transient features is negligibly small. 
Comparison between estimated and real values shows 
the accuracy of proposed equations. 
 
Table 1 Simulation parameters. 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 
        Fig. 5 Comparison between approximated and numerical results of Eq. (12) and simulation results for output excess phase when input  
        phase step increases. (a) in radΔϕ = 0.8 , (b) in radΔϕ = 1 , (c) in radΔϕ = 1.2 , (d) in rad.Δϕ = 1.5  
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