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Abstract: In this paper an exact transient analysis of Bang-Bang PLLs (BBPLLs), as a
nonlinear system, is presented. New equations are proposed for expression of transient
behavior of the BBPLL with first order filter in response to phase step input. This approach
gives new insights into the transient behavior of BBPLLs. Approximating transient
response to reasonable specific waveform; the loop transient time characteristics such as
locking time, peak time, rise time and over shoot are derived with acceptable accuracy. The
validity of the resulted equations is verified through simulations using MATLAB
SIMULINK. Simulation results show the high accuracy of the proposed method to model

BBPLLs behavior.
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1 Introduction

The use of bang-bang phase locked loops has become
increasingly common in a lot of communication
systems, especially in clock and data recovery (CDR)
systems [1]-[4]. Also these types of PLLs are widely
used at the higher speed process. These systems use a
bang-bang phase detector (BBPD) in the loop, which
samples data as a part of the phase detection process,
therefore there exists no systematic phase error between
the data signals and the recovered clock signals. BBPD
quantizes the phase error between input (data) and
output (clock) with 1-bit resolution. For this reason,
these types of the PLLs suffer hard nonlinearity. This
behavior of the BBPLLs causes that the researchers
make an effort to analyze it. BBPLL circuits must
satisfy some specifications such as speed, stability,
capture range and phase noise, posing challenges to
system designers. Most researches focused on jitter
analysis (see [5]-[10]) but there exists a few researches
on the transient analysis. Design of the BBPLL in
higher speeds is the most important reason to analyze
the BBPLL in time domain. Transient behavior of a
BBPLL in response to the phase and frequency step
inputs is a main issue in time domain that this paper has
focused on phase step response. Because of the
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nonlinear behavior of the BBPLL, these inputs cause
responses with two different general forms depending
on the input step size. Some simple equations have been
presented to express the locking time of the BBPLL in
[11] and [12]. These equations are limited only for
particular conditions which is called cycle slipping.
These researches are focused on the frequency step
response. Also there exists no expression for other
features of transient time; rise time, peak time, settling
time and over shoots.

This paper presents a novel method to derive the
closed form equations to clarify the transient behavior
of the BBPLLs. In this method a parameterized
waveform of the output excess phase is estimated and
equations for unknown parameters are derived using
differential equations governing on the BBPLL.

The rest of the paper is as follows: Section 2
introduces BBPLL model with first order filter and a
brief review of the existing methods. Section 3
describes the proposed methodology to derive the
equations for locking time, peak time, rise time and over
shoot. A new technique based on an estimated model for
output is presented to derive equations for transient
response in this section. Simulation results will show
validity of this method in section 4. Finally, section 5
gives conclusions.

2 BBPLL with First Order Filter

Consider two cases of the BBPLL; BBPLL with
zero order filter and BBPLL with first order filter.
References [2] and [5] have illustrated the operation of
these two cases clearly. Due to the low speed and small
capture range of the BBPLLs with zero order filter, their
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Fig. 1 BBPLL architecture with first order filter

use is very limit [2]. In contrary, the BBPLL with first
order filter is noticeable. Figure 1 shows a BBPLL with
first order filter. This structure adds an integral path to
the loop filter of the system. This integral path provides
bigger capture range and makes the loop faster. Because
of these compelling advantages, the bang-bang loop
with first order filter has become a common design
choice for state-of-the CDR designs. For this reason, in
this paper, we have focused on the BBPLL with first
order loop filter used as a CDR.

As mentioned above, the purpose of this paper is to
derive the all information of the transient time. At first,
the previous works are briefly discussed. Only reference
[2] has indicated phase step response of the BBPLL by
phase trajectory with discrete time difference equations
for BBPLL with first order filter as (1).

00 _ 0
(n g) (1)

In above equationO(t) refers to excess phase
difference, 8, indicates loop phase step that equals to
2nl R Kt .. and n=tt =1/f,. f, is the

p  p  veo “update update

and ¢

update
central frequency of VCO. A stability factor, & is
defined in (1) which equals to 2R C 4 and a

p ~update
normalized transient phase step as A=6,/0, . In

equation (1), the time required to reach steady state,
given a step of A is always less than or equal to A time
steps, independent of & [2]. The resulted phase
trajectories show changes of oscillatory transient for the
different values of§ . These trajectories don't express

the details of transient behavior of the BBPLL, because
there are no equations to indicate features of transient
time. Therefore it is critical to analysis the BBPLL in
time domain and extract all important times.

Consider a BBPLL with first order filter shown in
Figure 1. The BBPLL consist of a BBPD, charge pump
with current I, a loop filter with resistance R, and
capacitor Cp connected series, and voltage controlled
oscillator (VCO) with gain Kyco. The output voltage of
bang-bang phase detector v, (t) provides a binary form

of voltage as sign(p, (t)—¢,, (t)) Where it has indication

of the phase difference between the input (data) and the
output (clock). The parameters ¢, (t) and ¢, (t) refer to
phase of input signal and the output signal of VCO,
respectively. v ,(t) is +1 when the phase difference is

positive and -1 when phase difference is negative.
v,4(t) is shown as (2).

Voa (1) = sign(@;, (1) = ¢, (1)) 2
when v () is +1, I charges the loop filter and when

is -1, discharges the loop filter. This model is the same
BBPLL discussed in [4] and [5]. To introduce BBPLL,
at the first we express the basic equations governing on
the BBPLL. Note that the VCO used in Figure 1 is
assumed linear. So we can write equation (3) for VCO.

0\)L)Ll( (t) = 0)() + kVCOVCOt (t) (3)

whereo_,(t), o,and v (t)refer to the output

frequency, VCO central frequency and control voltage
of VCO, respectively.

In the BBPLL based CDR, with the input data signal
shown in Figure 2, in the steady state or locked
condition the output phase (frequency) is twice of the
input phase (frequency) [1]. So when the input phase
(frequency) changes from its steady state condition, the
PLL experiences a transient time and the output phase
(frequency) reaches to a new steady state; twice of the
input new phase (frequency). So in locked condition, the
output phase (frequency) is twice of the input (data). So
in locked condition at the VCO central frequency o,

(nominal condition), we consider the input frequency
equal to ®,/2 in equations governing on the BBPLL.

Figure 2 shows the input data and cock data with a
phase error. It is seen from Figure 2 that the frequency
of clock is twice of input data frequency. Using the

relation between phase and frequency as ¢(t) = I o(t)dt

and introducing the phase step as Ag,, , we can write the

set of following equations for BBPLL. Input phase and
output phase are defined as (4) and (5).

9, (t) = _[(Din (Ddt + Ap,u(t) = @

=i+ Ag,,u(t)
2 “)

t)=|o,(t)dt=ot+2rk | v, (t)dt
(pout() J‘ out() c vco_[ Cot()d (5)

Since at the nominal steady state, the phase error,
Qi) =@, (t), is zero, we express the dynamical
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Fig. 2 Input (data) signal and output (clock) signal
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equations of the BBPLL in term of the excess phases.
So Ag, u(t) is the input excess phase denoted by @, ¢, t)

and K Iv « ()dt is the output excess phase, denoted

by @y e (1) . So excess phase error is written as (6).

(Pe (t) = (pin,ex (t) - (Pout,ex (t)
= A(pin - 27-ckvco I Vcot (t)dt

After locking, as mentioned above, the output phase
is twice of the input, so according to (4) and (5), we
have (7).

o+ 2wk, [ v, (Dt = 2025 t+ Ag, u(1) (7)

(6)

As we know, in the locked condition, the output
frequency is twice of the input. Using this point along
with equation (7), (6) should be rewritten as (8).

(1) = 249, — 27k, [ v,,, (t)dt ()
Or we can consider a factor of 1/2 for output excess
phase (K, J‘vmt (t)dt ) instead of factor of 2 for input

excess phase (A, u(t)) in equation (8). Equation (8)
guaranties that ¢, (t)=0is equal to the locked

condition. This also can be investigated and verified
using simple simulations.

3 Proposed Method
3.1 General Procedure of the Proposed Method
The method proposed in this paper is based on the
exact differential equations governing on the BBPLL.
These equations are simply obtained using circuit
analysis methods and the equations (1) to (8). At the
beginning, we obtainv_ (t) by analyzing Figure 1 as

9).
Ve (1) = R I sign (o, (1)) + j Md ©

In equation (9), the term Slgn((Pe(t)) is the role of

phase detector output on the filter charging current that
is in the form of +R I +(I,/C )t.

To derive the differential equation ofv_ (t), we
need to define v, (t).

As mentioned before, the output voltage of BBPD
(v,a(t)) is as a sign function, this function imposes a

hard nonlinearity on the loop. To overcome this
problem, we introduce a proper function instead of sign.
Because of discontinuity of sign at zero, we suggest
replacing sign with another function which is
continuous and also is very similar to sign function. So
it is possible to apply integral and derivative operators
on it. Among different alternatives, trigonometric

functions such as tanh(a,(t)) and arctan(ag,(t))are
selected, because these functions are more similar to
sign function. See Figure 3, when a is increased
tanh(oup,, (t)) converges to sign function. a is an input
parameter. By changing o, we can make an acceptable
approximation for sign function. We solve equation (9)
by replacing sign function with tanh(aup,, (t)).
Substituting (8) into Vo (t) and Vo (t) into (9) and
finally differentiating both sides of (9), results in
differential equation of v_ (t) as follows:
dvcot(t) —
dt
oI, R, (1 - tanh’ (. (240, = 27K, [ Voo (D140

I
X(2TK Vo (0) + - tanh(. 2, 27K, [ Ve (6).d0)
p

(10)
To solve (10), consider the set of following
equations in state form:

x,(t) = 27K, [ v, (Dt

XZ(t) = Vcot(t) (11)
dxl (t)
dt 2 chox2 (t)

Substituting the above equations into (10), result in a
differential equation as

dxét(t) —ol R (1-tanh®(aL(2A¢,, =X, (D))(——

1(0)

: (12)
+—-tanh(aL(2A¢,, —x, (1))

CP
x,(t) refers to the control voltage of oscillator and x,(t)
indicates the output excess phase. To evaluate the effect
of approximation of tanh(ag_ (t)) on the behavior of the

system, we numerically solved the equation (12) in

4 tanh(ae. ()

T | m—
% Increase of a
>
— = 1

Fig. 3 tanh(a¢,(t)) function compared with sign.
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Fig. 4 Numerical Solution of the Eq. (12) for Ag,= 1 rad. compared with simulation. (a) Output excess phase. (b) excess phase error.

MATLAB. Figure 4 (a) illustrates output excess phase
and (b) shows the excess phase error (2Ae, —x,(t) ).

The simulation results show the equation mentioned in
(12) models the system behavior with acceptable
accuracy. Since (12) is a nonlinear equation, the direct
solution of the system is very complicated. So we
introduce an approximate method.

Based on what reported in the previous works and
many simulations performed (Fig. 4), we found out that
the output excess phase transient has a well defined
shape that can be simply approximated by an analytical
function.

We solve equation (12) by fitting a reasonable
waveform forx,(t). In a BBPLL, before applying a

phase step (Ag,,), the output excess phase (x,(t)) is

zero, according to what mentioned before, if a phase
step enters, X, (t) reaches a constant value (2A¢,, ) after

the oscillatory transient and after the locking point, the
final value does not change, (see Fig.4). So we consider
a damping oscillatory waveform as (13) to model the
output excess phase. Equation (13) is the key
simplifying assumption that leads to straightforward
analysis along with accurate results. Equation (13) could
be considered as an initial simple estimation for output
excess phase response, it is necessary to improve the
approximate solution wusing a simple approach.
Assuming this, the analysis is devoted to find d, a, and
b.

X, (t) = d(1—e " sin(bt) —e™ cos(bt)) (13)

Regarding (12), it is necessary to find dx,(t)/dt and
dx, (t)/dt. Based on the equations indicated in (11) and
(13), dx,(t)/dtand dx,(t)/dtcan easily be obtained as
(14) and (15), respectively shown at follows:

dx, (t)/dt = (14)
2751200 (e sin(bt)(—2ab—a’ +b*)

+e ™ cos(bt)(—a’ +b” +2ab))

dx, (t)/dt = (15)

de™ sin(bt)(b+a) +de ™ cos(bt)(a —b)

Using bit mathematical operations, (12)-(15) can be
combined and equation (16) is resulted; the basic
trigonometric equation of the proposed method.

5 Ii (e ™ sin(bt)(—2ab—a’ +b*) +e * cos(bt)(-a’ + b* + 2ab))
n veco

=—o.l R (1-tanh®(c.(2A¢,, —d(1—e™ cos(bt) —e™ sin(bt)))))
xde™ sin(bt)(b+a)+de™ cos(bt)(a—b)

I
+ C—p tanh(a..(2A@;, —d(1—e™ cos(bt) —e™ sin(bt))))
p
(16)
Equation (16) holds for every time especially for the
special times that we have:

t—>00= e cos(bt)=0 e *' sin(b.t)=0 (17)

e sin(bt) = —™ cos(bt) (18)

t=0= e cos(bt)=1¢e "'sin(bt)=0  (19)

The special times used above make it very simple to
find the fitting parameters. Indeed these times leave
simple equations to solve.

Substituting equation (17) into (16), we can find
equation (20) for parameter d in term of input phase
step.

tanh(o..(2A@,, —d))=0 = d =2Ag,, (20)
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when the BBPLL is locked, the final value of output
excess phase can be calculated by (20).
Substituting (18) into (16), a closed form equation is
derived for parameter a in term of circuit parameters as
2nl R aK
a=__ P P Vo (21)
2
It can be seen from (21) that the parameter a is
directly proportional to I, R K and input

p° veo
parameter o .
To obtain b, we assume that the left side of (16)

(dx, (t)/dt) is as (22).

dx,(t)  dx, (1) _d 2ab+a’ o

dt new dt old 2TCK

In added exponential term, [ is so large. This
assumption is used to provide a proper initial condition
for the left side of (16) (equation (14)) at t=0. Note
that this assumption has no effect on other equations
indicated in (20) and (21), it just leads to an appropriate
response for parameter b. Considering assumption of
(22) and substituting (20) in (16), we have

d(b*-2a*) = -2na.l R K x(I-tanh’(2aAg,

(22)

vCco

I K
xd(a—b)+ 2n%tanh(2aA(pm) (23)
P

Since tanh(20A@,,)~1 and knowing a and d, a

closed-form equation for unknown parameter b can be
derived as (24).

21l K (24)
S bt S C U P
dc

p
It can be seen from (24), b is a function of circuit
parameters and input phase step.
To calculate d, a and b, we need to define the
parameter &.. As mentioned before, tanh(2aA¢@, ) is

approximately equal to +1. We  assume
tanh(20A@, ) =0.99999 that results in (25) for

parameter . .
o =3/Ag,, (25)

For simplicity, we assumed, o only depends on the
input step. The expression (25) can help to find a proper
a for each value of Ag, . The simulation results verify

the accuracy of (25).

The closed form equations obtained in this section
can represent the unknown parameters a, d and b just
knowing the circuit parameters and the size of phase
step input.

3.2 Transient Featuresof BBPLL
In previous section, we have approximated a
mathematical model for output excess phase in response
to phase step input. This model has been shown in (13).

To describe the transient behavior of the BBPLL, we
need to know the features of its transient time such as
rise time, over shoot, peak time and settling time.
Equation (13) is similar to the step response of a linear
second order system (see Fig. 4(a)). According to [14],
we can easily rewrite (13) as (26).

X, (t) = d(1—~/2¢ ™ sin(bt +§)) (26)

Using what mentioned in [14], the transient features
of (26) can be easily obtained as following equations.
Rise time can be written as (27).

n—0 3n

. = - tr = —
b 4b
where 0 =m/4. Equation (27) shows that the rise time

is reversely proportional to parameter b. Also as
illustrated in [14], the peak time can be defined as (28).

t

27

dx, (t) _T

= O :> t —_ 28

Pt b 28)
The peak time presented in (28) is also reversely

proportional to b. And finally the over shoot is found as

_x()-x ()

X, (%) @)

p

From (29), it is seen that the over shoot is function
of a and b. If we consider the tolerance, %5, hence the
settling time can be derived as (30).

to == (30)

The settling time presented in (30) is reversely
proportional to a. Resulted equations can manifest the
transient behavior of the BBPLL clearly.

This method can describe the transient behavior of
BBPLL for each input phase step and different values of
design parameters. The proposed method in this paper
can help BBPLL designers to design a BBPLL with
higher speed and more stable in transient region.

4 Simulation Results

The proposed method to obtain the features of the
BBPLL is evaluated by simulations for different values
of input phase step Ag, , current I, resistance R,,
capacitor Cp, and K.

In this paper a BBPLL based CDR with an
Alexander PD is simulated in MATLAB simulink. A
numerical method using MATLAB software is used to
solve (12) for the case that A, increases. Figure 5 (a)
to (d) show the numerical and approximated solution of
Eq. (12), and simulated results of output excess phase,
when Ag, increases. Figure 5(a) to (d) show results

with different values of A, = 0.8 rad, 1.0 rad, 1.2 rad
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Fig. 5 Comparison between approximated and numerical results of Eq. (12) and simulation results for output excess phase when input
phase step increases. (a) Ag, = 0.8rad , (b) ag, =1rad, (c) Ap; = 1.2rad, (d) Ag, = 1.5rad.

and 1.5 rad, respectively. First, the value of o is
calculated for each phase step using (25). In second step
the unknown parameters of the estimated output are
calculated by (20), (21) and (24). Finally the transient

features t,, t,, M, and tare calculated by (27)-(30).

Expression (25) shows, each phase step results onea.,
this shows that the parameter a obtained in (21) depends
on the input phase step; consequently, b is depended on
the input phase step. Therefore all important times in
transient region depend on the input phase step. Table 1
gives simulation parameters. A comparison between
estimated and real values shows the accuracy of
analytical equations. Estimated results and actual
undergoes the variation of input phase step are given in
Table 2. The numerical, estimated and simulation
results presented in Table 2 and Figure 5 show, when
A, increases, the rise time, peak time, settling time

and over shoot increase and this is exactly what we
expect in the BBPLL.

Based on the presented plots and Table in this paper,
the difference between precise and approximate
solutions for transient features is negligibly small.
Comparison between estimated and real values shows
the accuracy of proposed equations.

Table 1 Simulation parameters.

Simulation Parameters
Resistance R, 300Q
Capacitor C, 100pf

Current I, 40uA
VCO gain Kyco 200MHz/v
VCO Frequency 2GHz
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Table 2 Comparison between simulation, calculated and numerical results when input step increases.

Calculated Results Numerical Result Simulation Results
t, S T O O B O B I B VI
(us) () (us) (us) | (us) | (us) (us) | (us) | (us) (rad)
0.1 0.072 0.054 | 0.13 0.15 | 0.069 | 0.049 | 0.14 0.1 0.08 | 0.056 0.1 0.8
0.132 0.088 0.066 | 0.136 | 0.137 | 0.082 | 0.06 | 0.142 | 0.136 | 0.094 | 0.065 | 0.15 1
0.16 0.1 0.078 | 0.142 | 0.18 | 0.097 | 0.07 | 0.149 | 0.162 | 0.12 | 0.073 0.2 1.2
0.199 0.126 0.095 | 0.15 0.22 0.01 | 0.085 | 0.18 | 0.196 | 0.13 | 0.085 | 0.23 1.5

5 Conclusions

This paper has presented a novel method to derive
exact enough analytical equations for the transient
response of BBPLL; rise time, settling time, peak time,
and over shoot. The output excess phase is assumed a
damping oscillatory waveform where the unknowns are
parameters which result in rise time, peak time, settling
time and over shoot. Nonlinear behavior of the BBPLL
can be explained easily with the presented equations.
This method can provide insight into BBPLL with
different BBPDs which can help designers for better and
much easier designs.
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