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Abstract: Two-dimensional (2D) adaptive filtering is a technique that can be applied to 
many image and signal processing applications. This paper extends the one-dimensional 
adaptive filter algorithms to 2D structure and the novel 2D adaptive filters are established. 
Based on this extension, the 2D variable step-size normalized least mean squares (2D-VSS-
NLMS), the 2D-VSS affine projection algorithms (2D-VSS-APA), the 2D set-membership 
NLMS (2D-SM-NLMS), the 2D-SM-APA, the 2D selective partial update NLMS (2D-
SPU-NLMS), and the 2D-SPU-APA are presented. In 2D-VSS adaptive filters, the step-
size changes during the adaptation which leads to improve the performance of the 
algorithms. In 2D-SM adaptive filter algorithms, the filter coefficients are not updated at 
each iteration. Therefore, the computational complexity is reduced. In 2D-SPU adaptive 
algorithms, the filter coefficients are partially updated which reduce the computational 
complexity. We demonstrate the good performance of the proposed algorithms thorough 
several simulation results in 2D adaptive noise cancellation (2D-ANC) for image 
denoising. The results are compared with the classical 2D adaptive filters such as 2D-LMS, 
2D-NLMS, and 2D-APA. 
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1  Introduction` 
Adaptive filter algorithms have numerous applications 
in electrical engineering [1], [2] and [3]. Two-
dimensional (2D) adaptive filters as well as one 
dimensional adaptive filter have received a great deal of 
attention in the last two decades [4], and that is because 
of their ability to take into account the inherent 
nonstationary statistical properties of two dimensional 
data, as well as 2D statistical correlation. The 2D 
adaptive filters have been applied to a variety of image 
processing applications such as image denoising, image 
enhancement, adaptive noise cancellation, 2D adaptive 
line enhancer, and 2D system identification. In [5], the 
one dimensional least mean squares (LMS) adaptive 
algorithm was extended to the 2D application and this 
algorithm was used for estimation of nonstationary 
images. In [6] an algorithm was proposed which was 
used the McClellan transformation. The new 2D-LMS 
whose convergence properties are not restricted to the 
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one direction, was proposed in [7]. Also, the 
development of a 2D adaptive filter using the block 
diagonal LMS method was presented in [8]. 

The 2D-LMS adaptive filter [5] is essentially an 
extension of its one dimensional counterpart. The 2D-
LMS is an attractive adaptation algorithm because of its 
simple structure, but this algorithm is highly sensitive to 
eigenvalue disparity, and its convergence speed is slow 
that is not appropriate in many applications. Therefore, 
to overcome this problem, the 2D normalized NLMS 
(2D-NLMS) algorithm was proposed. In this algorithm, 
the influence of the magnitude of the filter input on the 
convergence speed was considered. The 2D adaptive 
FIR filters which was based on affine projection 
algorithm (APA) was firstly introduced in [4]. In this 
algorithm the positions of projection vectors can be 
selected freely, and the performance is improved 
especially when the input data is highly correlated. 
Unfortunately, this improvement comes at the expense 
of a higher computational complexity. In [9] a fast APA 
for two dimensional adaptive linear filtering was 
presented. The results show that this algorithm has a fast 
convergence speed and good tracking ability. The 2D 
recursive least squares (2D-RLS) algorithm was 
proposed in [10-12]. Whereas the computational 
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complexity of one dimensional RLS is high, when we 
extend the one dimensional to 2D, the computational 
complexity is increased. The 2D-RLS has good 
performance in many applications, but the cost that we 
have to pay to enjoy its abilities is so expensive, 
therefore we did not consider this algorithm. 

In 2D adaptive filter algorithms, the small variation 
of the step-sizes can produce an undesirably large 
change in adaptation speed and accuracy. Hence the 
optimal step-size selection is important in different 
applications. This selection is usually obtained by trial 
and error. Furthermore, an adaptive system with a 
constant step-size cannot appropriately adjust its 
parameters. To overcome this problem, the time-varying 
step-size technique was proposed in [13]. In [14], the 
variable step-size APA (VSS-APA), and variable step-
size NLMS (VSS-NLMS) algorithm for one 
dimensional case were presented. The same approach in 
[14] was successfully extended to the other adaptive 
filter algorithms in [15] and [16]. In this paper, with the 
purpose of using variable step size in 2D applications, 
we extend the approach in [14] to establish of two new 
2D adaptive filter algorithms which are called 2D-VSS-
APA, and 2D-VSS-NLMS algorithms. In simulation 
results section, we demonstrate the good performance of 
the proposed algorithms in adaptive noise cancellation 
in digital images for image denoising. Unfortunately, 
when we use time varying step-size, we have to pay its 
cost, because of increasing the computational 
complexity. 

Another way to overcome, the problem of existence 
tradeoff between low misadjustment and high 
convergence speed contemporaneous, is using the 
concept of set-membership (SM) filtering. In this 
method, by definition an upper bound on the estimation 
error, the number of adaptation of filter coefficients is 
reduced. The one dimensional SM-NLMS algorithm 
and the SM-APA were proposed in [17] and [18], 
respectively. To reduce the computational complexity in 
2D applications, we introduced two new 2D-SM 
adaptive algorithms which are an extension of their one 
dimensional counterpart. The simulation results of the 
2D-SM-NLMS and 2D-SM-APA show that these 
algorithms have good performance in elimination of 
noise in digital images. 

In the classical adaptive filters the filter coefficients 
are fully updated. To reduce the computational 
complexity, other adaptive filter algorithms were 
introduced where the filter coefficients are partially 
updated. Based on this approach the filter coefficients 
which should be updated are optimally selected during 
the adaptation [19-24]. The one dimensional selective 
partial update NLMS (SPU-NLMS) and SPU-APA are 
important examples of these adaptive filters [25-26]. To 
reduce the computational complexity of conventional 
2D-NLMS and 2D-APA algorithms, we extend the SPU 
approach to 2D structure to establish of the 2D-SPU-
NLMS and 2D-SPU-APA. 

The parameters selection of many 2D adaptive filter 
algorithms did not considered completely in the 
literatures. Many of the parameters have been selected 
by try and error approach in different literatures. In this 
paper we study the former and new 2D-algorithms 
comprehensively. As we know, each algorithm has 
different behavior in various applications of adaptive 
filters. So, we consider the performance of the presented 
algorithms in 2D adaptive noise cancellation (2D-ANC) 
for image denoising. 

What we propose in this paper can be summarized 
as follows: 
1. Extension of VSS approach to 2D-NLMS, and 2D-

APA, and establishment of 2D-VSS-NLMS, and 
2D-VSS-APA. 

2. Extension of SPU approach to 2D-NLMS, and 2D-
APA, and establishment of 2D-SPU-NLMS, and 
2D-SPU-APA. 

3. Extension of SM filtering to 2D-NLMS, and 2D-
APA, and establishment of 2D-SM-NLMS, and 2D-
SM-APA. 

4. Demonstration of the presented algorithms in 2D-
ANC application. 
We have organized our paper as follows. Section 2 

presents classical 2D adaptive filter algorithms. In 
section 3, the novel 2D adaptive filter algorithms are 
established. Section 4 presents the computational 
complexity of the derived algorithms. We conclude the 
paper by presenting several simulation results in 2D 
adaptive noise cancellation for reduction of noise in 
digital images. 

Throughout the paper the following notations are 
adopted: 

T(.)                                  Transpose of vector or a matrix 

diag(.)                                              Diagonal of a matrix 

Tr(.)                                                      Trace of a matrix 

2.
                          Squared Euclidean norm of a vector 

| . |                                             Absolute value of a scalar 

 E .                                                 Expectation operator 

 
2 Background on Classical 2D Adaptive Filter 
Algorithms 

As we know, linear system parameterization is an 
important class of system modeling with a wide area of 
applications. The most popular among the class of linear 
model is the finite impulse response (FIR). It is imposed 
in order to simplify the estimation task and to reduce the 
computational load in real-time application [9]. Let 
u(i, j)  be the input of a linear 2D FIR model, defined 
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over a regularly spaced lattice 1 2(i, j) [M ,M ]∈ , where 

1M  and 2M  specify the order of the input data. The 
output of the 2D finite impulse response (FIR) digital 
filter, y(i, j) , is given by 2D finite impulse response 
(FIR) digital filter, y(i, j) , is given by 

1 2N 1 N 1

t=0 l=0

y(i, j) = w(t, l) u(i - t, j - l)
− −

∑ ∑
 

  (1) 

where, u(i,j)  is the input signal, w(t, l)  is the model 
coefficients, and 1N  and 2N  specify the order of the 
FIR filter. Usually, the 2D signal is presented as a 
matrix. Therefore, the weight matrix (i, j)W  and the 
input matrix (i, j)U  are introduced as 

k

2

1 1 2

(i, j) =

w(0,0) w(0, N -1)

w(N -1,0) w(N -1, N -1)
(2)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

W

K

K O K
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k

2

=

1 1 2

(i, j)

u(i, j) u(i, j - N +1)
(3)

u(i - N +1, j) u(i - N +1, j- N +1)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

U

L

K O L

K

 

where k  is the iteration number and 1 20 k M M≤ ≤ . 
Hadhoud expressed in [5] that the weight matrix and the 
input matrix can be converted into their one-
dimensional form by lexicographic ordering. Equations 
(4) and (5) present the one dimensional form of Eq. (2), 
and Eq. (3). 

k 2
T

1 2

(i, j) = [w(0,0) w(0,1)...w(0, N -1)

w(1,0)...w(N -1,N -1)]

w
 

 
         (4) 

k 2
T

1 2

(i, j) = [u(i, j) u(i, j -1)...u(i, j - N +1)

u(i -1, j)...u(i - N +1, j - N +1)]

u
 

 
         (5) 

Both vectors (i, j)u  and (i, j)w  have dimensions

1 2(N N ) 1× . From Eq. (4), and Eq. (5), Eq. (1) can be 
stated as 

T
k k ky (i, j) = (i, j) (i, j)w u  

 
                       (6) 
 

 
2.1   2D-LMS Adaptive Filter Algorithm 

This algorithm is based on the steepest descent 
method [27-29], and in this method the two dimensional 
weight adaptation is given by 

k
k+1 k

k

δξ (i, j)
(i, j) = (i, j) -μ

δ (i, j)
w w

w
 

 
                     (7) 

where μ is the step size and can control the rate of 
convergence, steady state error, and filter stability and 
ξ , mean square error (MSE), is the cost function which 

is defined as 2
k kξ (i, j) = E e (i, j)⎡ ⎤

⎣ ⎦ , where ke (i, j)  is the 

error signal at the kth iteration and is given by 

T
k k k ke (i, j) = d (i, j) - (i, j) (i, j)w u  

 
  (8) 

where kd (i, j)  is the desired signal. The aim of 2D-
LMS algorithm is to obtained the optimum weight 
matrix such that the cost function, kξ (i, j) , is minimized. 
The 2D-LMS algorithm is a practical scheme for 
realizing 2D wiener filter, without explicitly solving the 
Wiener-Hopf equation. This algorithm uses the 
instantaneous estimates into the steepest descent 
algorithm. This algorithm replaces the cost function, 

2
k k(i, j) = E e (i, j)⎡ ⎤ξ ⎣ ⎦  

with 2
k k(i, j) = e (i, j)⎡ ⎤ξ ⎣ ⎦  which 

leads to 

k k k
k k

k k

δ (i, j) 2e (i, j) δ(e (i, j))
= - 2e (i, j) (i, j)

δ (i, j) δ (i, j)
ξ

= u
w w

 
 

(9) 

By substituting Eq. (9) into Eq. (7), the filter 
coefficients update equation for 2D-LMS is obtained by 

k+1 k k k(i, j) = (i, j) + 2μ e (i, j) (i, j)w w u  
 

(10) 

 
2.2  2D-NLMS Adaptive Filter Algorithm 

In this algorithm, as we mentioned before, the 
influence of magnitude of the filter input was 
considered. The filter coefficients update equation for 
2D-NLMS algorithm is obtained by 

k+1 k k
T 1
k k k

(i, j) = (i, j) +μ (i, j)

( (i, j) (i, j) + ) e (i, j)−δ

w w u

u u
 

 

 
(11) 

where δ  is a positive small parameter which keep 
k (i, j)u  to become singular. We can consider this 

algorithm as a 2D adaptive filter algorithm with time 
varying step-size, when we define the variable step-size 
as 

T 1
k k= ( (i, j) (i, j) + )−μ δu u  

 

(12) 

 
2.3   2D-APA Adaptive Filter Algorithm 

The 2D-APA algorithm of Muneyasu and Hinamoto 
[4] can be interpreted as the 2D filter that minimizes the 
following objective function, 

2
k+1 kmin (i, j) - (i, j)w w  

 
(13) 

subject to 
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T
k k+1 k(i,j)= (i,j) (i,j)d w U%  

 

(14) 

In 2D-APA, we use (KL)  blocks to update the 
weight coefficients, where the parameters K and L  are 
introduced to apply the recent input vectors in relations, 
and they are usually selected as 10 K N≤ ≤ , and

20 L N≤ ≤ . The matrix (i, j)U%  have dimension 

1 2(N N ) (KL)×  and it consist of regressor vectors that 
belongs to the affine projection support region. By 
defining (15) for m = 0,1,...K-1 

k k k

k

ˆ (i - m, j) = [ (i - m, j) (i - m, j-1)
... (i - m, j- L +1)]

U u u
u

 

 
(15) 

The input matrix can be obtained as 

k k k k
ˆ ˆ ˆ(i, j) = [ (i, j) (i -1, j)... (i - K +1, j)]U U U U%  

 

(16) 

Also, k (i, j)d  is the desired signal vector with 
dimension of (KL) 1×  which is given by 

k
T

(i, j) = [d(i, j)d(i, j-1)...d(i, j- L +1)

d(i -1, j)...d(i - K +1, j- L +1)]

d
 

 

(17) 

From the above, the filter coefficients update 
equation for 2D-APA can be established by 

k+1 k k(i, j) = (i, j) +μ Δ (i, j)w w w  
 

(18) 

where 
T -1

k k k k kΔ (i, j) = (i, j)( (i, j) (i, j) +δ ) (i, j)w U U U I e% % %  
 

(19) 

and 
T

k k k k(i, j) = (i, j) - (i, j) (i, j)e d U w%
  

 

(20) 

is the output error vector. Notice that the 2D-NLMS 
algorithm is a special case of 2D-APA algorithm, when 
we use a current block ( K 0,L 0= = ) to update the filter 
coefficients. 
 
3   Derivation of 2D Adaptive Filter Algorithms 

In this section we introduce the novel 2D adaptive 
filter algorithms. 

 
3.1   2D-VSS-APA and 2D-VSS-NLMS 

In Eq. (18) the weight update equation for 2D-APA 
was presented. Following the same approach in [14], if 
we rewrite the update equation for 2D-APA respect to 
weight error vector, k k(i, j) = (i, j) - (i, j)ow w w% , where 

(i, j)ow  is the true unknown filter vector, Eq. (21) is 
obtained as 

T
k+1 k k k

-1
k k

(i, j) = (i, j) -μ (i, j) ( (i, j)

(i, j) +δ ) (i, j)

w w U U

U I e

% %% %

%
 

 
 

(21) 

By taking the squared Euclidean norm and 
expectations from both sides of Eq. (21), Eq. (22) is 
obtained as 

2 2
k+1 kE (i, j) E (i, j) μ= − Δw w% %  

 
 

(22) 

where 
T T -1 T
k k k k k

T T -1
k k k k k

2 T T -1
k k k k

μ μE (i, j) ( (i, j) (i, j)) (i, j) (i, j) +

μE (i, j) (i, j) ( (i, j) (i, j)) (i, j)

μ E (i, j) ( (i, j) (i, j)) (i, j) (23)

⎡ ⎤Δ = ⎣ ⎦
⎡ ⎤ −⎣ ⎦
⎡ ⎤
⎣ ⎦

e U U U w

w U U U e

e U U e

% % % %

% % %%

% %

 

To have maximum decreasing in MSD from 
iteration (k)  to (k +1) , μΔ  should be maximized. 
Maximizing μΔ  with respect toμ , the optimum step-
size can be stated as 

T T -1 T
k k k k k

k T T -1
k k k k

Re E (i, j) ( (i, j) (i, j)) (i, j) (i, j)
μ (i, j) =

E (i, j) ( (i, j) (i, j)) (i, j)

(24)

°
⎡ ⎤
⎣ ⎦

⎡ ⎤
⎣ ⎦

e U U U w

e U U e

% % % %

% %  

If we define the linear data model for desired signal 
as T

k k k(i, j) = (i, j) (i, j) + (i, j)od U w v% , where k (i, j)v  is 
the vector of measurement noise, the error vector can be 
described as 

T ° T
k k k k k k

T
k k k

(i, j) = (i, j) (i, j) + (i, j) - (i, j) (i, j) 

= (i, j) (i, j) + (i, j) (25)

e U w v U w

U w v

% %

% %
 

We assume that k (i, j)v  is statistically independent 

of regression data k (i, j)U% . Substituting Eq. (25) into 
Eq. (24), Eq. (26) is given by 

T T -1
k k k k k k
T T T
k k k k k
T -1 T
k k k k k

μ (i.j) E[ (i, j) (i, j) + (i, j)) ( (i, j) (i, j))

(i, j) (i, j)] /E[ (i, j) (i, j) + (i, j))

( (i, j) (i, j)) ( (i, j) (i, j) + (i, j))] (26)

° ≈ (w U v U U

U w (w U v

U U U w v

% % %%

% %% %

% % % %

 

By defining: 

T -1
k k k k

T
k k

(i, j) = (i, j)( (i, j) (i, j))

(i, j) (i, j)

q U U U

U w

% % %

% %
 

 
 

(27) 

where k (i, j)q  is 1 2(N N ) 1×  column vector, we obtain 

2 T T -1
k k k k k

T
k k

(i, j) (i, j) (i, j) ( (i, j) (i, j))

(i, j) (i, j)

=q w U U U

U w

% % %%

% %
 

 
 
 

(28) 

Therefore, Eq. (26) can be written as 
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( ){ }
2

k
k 2 2 T -1

k v k k

E (i, j)
μ (i.j) = (29)

E (i, j) Tr E ( (i, j) (i, j))
°

+

q

q U U% %σ
 

where 2
vσ  is the variance of measurement noise.  

To obtain the optimum step-size from Eq. (29), we 
need (i, j)ow , which is unknown. From Eq. (25), we 
can estimate k (i, j)q  by time averaging as follows: 

k+1 k k
T -1
k k k

ˆ ˆ(i, j) = γ (i, j) + (1- γ) (i, j)

( (i, j) (i, j) +δ ) (i, j)

q q U

U U I e

%

% %
 

 
 

  (30) 

where γ  is a smoothing factor ( 0 γ < 1≤ ). 
By substituting the estimated value of k (i, j)q  

instead of its real value in Eq. (29), the variable step-
size for 2D-APA algorithm is given by 

2
k

k max 2
k

ˆ (i, j)
μ (i, j) = μ

ˆ (i, j) C+

q

q
 

 
 

(31) 

where ( ){ }2 T -1
v k kC = Tr E ( (i, j) (i, j))σ U U% %  and can be 

selected constant in simulation results. To guarantee the 
stability of the filter maxμ is chosen less than 2. 
Therefore, the filter coefficients update equation for 2D-
VSS-APA algorithm can be stated as 

k+1 k k k
T -1
k k k

(i, j) = (i, j) +μ (i, j) (i, j)

( (i, j) (i, j) +δ ) (i, j)

w w U

U U I e

%

% %
 

 
 

(32) 

2D-VSS-NLMS is a special case of 2D-VSS-APA 
when we use only one block to update weight matrix. 
The filter coefficients update equation in 2D-VSS-
NLMS is given by the following relations 

2
k

k+1 k max 2
k

T 1
k k k k

ˆ (i, j)
(i, j) = (i, j) +μ

ˆ (i, j) C

(i, j) ( (i, j) (i, j) + ) e (i, j)−

+

δ

q
w w

q

u u u

 

 
 
 

 
(33) 

where 

k+1 k k
T -1
k k k

ˆ ˆ(i, j) = γ (i, j) + (1- γ) (i, j)

( (i, j) (i, j) + ) e (i, j)δ

q q u

u u
 

 
 

(34) 

 
3.2   2D-SM-APA and 2D-SM-NLMS 

In 2D set-membership filtering, an upper bound, β , 
on the magnitude of the estimation error is specified. 
The parameter β  can vary with the specific application. 
When the signal error is  larger  than  the  certain  value 
(β ), the filter coefficients are updated. On the other 
word, the step-size which is proportionate to the 

absolute value of error is introduced in this algorithm. 
Following the same approach in [18] for one 
dimensional SM-APA, the weight update equation for 
2D-SM-APA is given by 

k+1 k k k
T 1
k k k 1

(i, j) = (i, j) + (i, j) (i, j)

( (i, j) (i, j) + ) e (i, j) −

α

δ

w w U

U U I v

%

% %
 

 
 

(35) 

where 

k
kk

1 if e (i, j)
e (i, j)(i, j)
0 otherwise

β⎧ − > β⎪α = ⎨
⎪
⎩

 

 
 

(36) 

and 
k k k k

T
k k

T
1

(i, j) = [e (i, j) e (i, j -1)...e (i, j - L +1)

e (i -1, j)...e (i - K +1, j - L +1)]

= [1  0  0 ....0]

e

v

 

 
 
 
 
 

 

(37) 

The 2D-SM-NLMS is a special case of 2D-SM-APA 
and is obtained when we use current block to update the 
weight matrix and can be stated as 

k+1 k k k
T 1
k k k

(i, j) = (i, j) + (i, j) (i, j)

( (i, j) (i, j) + ) e (i, j)−

α

δ

w w u

u u
 

 
 

(38) 

It is clear in the above equation that, if the absolute 
value of error becomes smaller than β , then the step-
size will be zero and if it is larger than β , the step-size 
becomes large (close to 1). These algorithms exhibit 
like VSS adaptive filters and also reduce the 
computational complexity. 

 
3.3  2D-SPU-NLMS 

As we mentioned, we introduce 2D-SPU-NLMS 
algorithm to reduce the computational complexity. In 
this algorithm, we partitioned the input matrix into 1N  
blocks, each of length 2N , and in each iteration a subset 
of these blocks is updated. The parameter S  is used to 
show the number of blocks to update in each iteration. 
By extending the approach in [20] and [25] to 2D 
version, the filter coefficients update equation for 2D-
SPU-NLMS is obtained by 

k+1 k k k k(i, j) = (i, j) + (i, j) (i, j) e (i, j)μw w C u  
 

(39) 

where 

k
k 2

k k

(i, j) =
(i, j)

A
C

A u
 

 
 

(40) 

The matrix kA  is a 1 2 1 2(N N ) (N N )×  diagonal 
matrix with the 1 and 0 blocks each of length 2N on the 
diagonal and the positions of 1’s on the diagonal 
determine which coefficients should be updated in each 
iteration. 
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By partitioning the regressor vector k (i, j)u  into 1N  
blocks each of length 2N , the positions of 1 blocks ( s
blocks and 1S N≤ ) on the diagonal of kA  matrix for 
each iteration in the 2D-SPU-NLMS adaptive 
algorithms are determined by the following procedure: 

1. The 
2

kkˆ (i, j)′u values are sorted for 10 k (N 1)′≤ ≤ −

, where kkˆ (i, j)′u  describes each block of input matrix at 
kth iteration, and 

kk
T

2

ˆ (i, j) = [u(i - k , j) u(i - k , j -1)u(i - k , j - 2)

.....u(i - k , j - N +1)] .
′ ′ ′ ′

′

u
 

2. The k′ values that determine the positions of 1 blocks 

correspond to the s  largest values of 
2

kkˆ (i, j) .′u
 

3.4     2D-SPU-APA 
The SPU approach can be extended to APA. As we 

mentioned, the SPU-APA for one dimensional was 
presented [20] and [26]. This section presents the 2D-
SPU-APA to reduce the computational complexity in 
two dimensional applications, where we use (KL)  
blocks to update the weights matrix. In this algorithm 
we partition the input matrix into 1N  blocks, each of 
length 2(N ×KL) , and we use S  blocks to update. The 
filter coefficients update equation for 2D-SPU-APA is 
given by 

k+1 k k k
T -1
k k k k

(i, j) = (i, j) + (i, j)

( (i, j) (i, j) +δ ) (i, j)

μw w A U

U A U I e

%

% %
 

 
 

(41) 

where the kA  matrix is the 1 2 1 2(N N × N N )  diagonal 
matrix with the 1 and 0 blocks each of length 2N on the 
diagonal and the positions of 1’s on the diagonal 
determine which coefficients should be updated in each 
iteration. By introducing 2(N KL)×  block matrix 

kk
ˆ (i, j)′U  for 10 k (N -1)′≤ ≤  as 

kk kk kk kk
T

k(k +1) k(k +1) k(k +K-1)

ˆ ˆ ˆ ˆ(i, j) = [ (i, j) (i, j -1)... (i, j - L +1)

ˆ ˆ ˆ(i, j),... (i, j - L +1)... (i, j - L +1)] (42)
′ ′ ′ ′

′ ′ ′

U u u u

u u u
 

the following procedure is used to find the positions of 1 
blocks. 
1. Compute T

kk kk
ˆ ˆTr ( (i, j) (i, j))′ ′U U  for 10 k (N -1)′≤ ≤  

2. The k′ values that determine the positions of 1 blocks 
correspond to the s  largest values of 

T
kk kk

ˆ ˆTr ( (i, j) (i, j))′ ′U U . 
When all blocks are used for updating the weight 

matrix 1(S = N ) , the conventional 2D-APA is 
established. 
4   Computational Complexity 

Table 1 presents the computational complexity of 
2D adaptive algorithms which were introduced in this 
paper. As we can see, the computational complexity of 
2D-SPU-NLMS and 2D-SPU-APA are less than 
conventional 2D-NLMS and 2D-APA algorithms, and 
the computational complexity for 2D-VSS-NLMS and 
2D-VSS-APA algorithms are more than these 
algorithms. For the 2D-SPU adaptive filters, the number 
of comparisons based on heapsort algorithm have been 
also presented in Table 1 [30]. For the 2D-SM-NLMS, 
and 2D-SM-AP algorithms, the adaptation is related to 
the condition in Eq. (36). If the condition in Eq. (36) 
always becomes true (which in practice it does not), 
then the computational complexity of 2D-SM 
algorithms are similar to the complexity of classical 2D 
adaptive algorithms. But the gains of applying the 2D-
SM algorithms comes through the reduced number of 
required updates, which cannot be accounted for a 
priori, and an increased performance as compared to 
classical 2D adaptive filter algorithms. 

 
5   Simulation Results 

In this section, we present the simulation results in 
one of the important applications of 2D adaptive filter 
algorithms, namely, 2D adaptive noise cancellation. Fig. 
1 shows the setup of 2D adaptive noise cancellation. 
The primary signal is the combination of desired and 
noise signals and the reference signal is noise which is 
correlated with the noise in the primary signal. 

2 ˆe(i, j) = d(i, j) - v (i, j) u(i, j)≈  
 

 

(43) 

The 2D adaptive noise cancellation tries to eliminate 
the noise from the noisy signal. Based on Eq. (43), after 
the convergence of filter coefficients, e(i,j) will be the 
estimation of desired signal. In this simulation, the 
white Gaussian noise with zero mean and unit variance 
v(i,j) is added to the images to produce the noisy images 
where the signal to noise ratio (PSNR) is set to 0 dB. 
Based on Eq. (44), the reference signal, v1(i, j), is 
generated by passing the white Gaussian noise with zero 
mean and unit variance through the 2D low pass filter. 
In this section, we use four standard images. The 
dimension of each original image is 256×256. Figs. 2 
and 3 show the original and noisy images. Also, the 
order of 2D adaptive filter is set to N1 = N2 = 5. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Adaptive noise cancellation setup. 
 

Low pass 
Filter

2D Adaptive 
Filter 

v(i, j) 1v (i, j) 2v (i, j)
+
+
−

e(i, j)

ˆd(i, j) u(i, j) v(i, j)= +
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1 2 3 4 5
1 1 1 1 1 1

1 2 3 4 5
2 2 2 2 2 2

1 2 1 2

1 2 1

b(z ) 1 0.7z 0.5z 0.05z 0.0056z 0.0004z

b(z ) 1 0.7z 0.5z 0.045z 0.0046z 0.0003z
B(z , z ) b(z )b(z ) (44)
B(z , z ) v (i, j) v(i, j)

− − − − −

− − − − −

= − + − + −

= − + − + −
=

=

 

One of the important subjects that did not fully 
considered in the literature is the performance of 2D-
algorithms in a comprehensive range of step-size. In Fig. 4, 
the performance of 2D-LMS, 2D-NLMS and 2D-APA 
algorithms in different values of step-size and for four 
images are considered. The step-size changes from 10-4 to 
1. To compare the performance of 2D adaptive filters, we 
calculated the PSNR of the output image which is defined 
as 

( )
1 2M 1 M 1

2

i 0 j 0

1 2

I(i, j) J(i, j)
PSNR = -10 log

10 M M

− −

= =

−
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑∑
   (45) 

where I and J is the original and noisy images, 
respectively. Also, M1 and M2 describe the size of input  
images. Fig. 4 shows that for each algorithm, there is an 
optimum value for the step-size to have maximum 
PSNR in output image. This figure shows that the 
optimum step-size in 2D-LMS is 10-3 for four images. 
In 2D-NLMS, this value is approximately 10-1, and for 
2D-APA with K=2, and L=2, the optimum step-size is 
10-2. Also, the stability bound of 2D-LMS is less than 
2D-NLMS, and 2D-APA algorithms. 

Figure 5 shows the PSNR of output images versus 
the step-size for 2D-SPU-NLMS algorithm. Different 
values for S have been used in this simulation. As we 
can see, there is an optimum step-size for 2D-SPU-
NLMS algorithm. Simulation results show that the 
optimum step-sizes are close to each other for different 
values of S. Also by increasing the parameter S, the 
PSNR of output image increases. This figure shows that 
the stability band of 2D-SPU-NLMS for S=1 and S=2 is 
less than 2D-SPU-NLMS with S=3, 4, and 5. 

 
 
 

Table 1 The computational complexity of 2D-LMS, 2D-NLMS, 2D-APA, 2D-SM-NLMS, 2D-SM-APA, 2D-VSS-NLMS, 2D-VSS-
APA, 2D-SPU-NLMS and 2D- SPU-APA. 
 

Algorithm Multiplications Divis
ions 

Additional 
Multiplications Comparisons 

2D-LMS 1 22(N N ) +1 ___ ___ ___ 

2D-NLMS 1 23(N N ) +1  1 ___ ___ 

2D-APA 
2 3

1 2 1 2( +1)(KL) N N + 2(KL)N N +(KL)
 

___ ___ ___ 

2D-SM-NLMS 1 23(N N ) +1  2 ___ ___ 

2D-SM-APA 
2 3

1 2 1 2( +1)(KL) N N + 2(KL)N N +(KL)
 

1 ___ ___ 

2D-VSS-NLMS 1 23(N N ) +1  1 1 2(N N )  ___ 

2D-VSS-APA 
2 3

1 2 1 2( +1)(KL) N N + 2(KL)N N +(KL)
 

1 1 2(N N )  ___ 

2D-SPU-NLMS 23(SN ) +1 1 1 1 2 1S+ O(N )N log
 

2D-SPU-APA 2 3
2 2( +1)(KL) SN +2(KL)SN +(KL)  ___ 1 1 2 1S+ O(N )N log
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(a) (b) 

 

 
(c) (d) 

Fig. 3 Noisy images with PSNR=0. (a) Pot (b) Simpson (c) Part (d) Camera man. 
 
 
 

Table 4 presents the results for 2D-SPU-NLMS, and 
2D-SPU-APA. Different values for the parameter S 
have been used. As we can see by increasing the 
parameter S, the PSNR of output image increases. This 
fact can be seen for all images. Also, the results for S=3, 
4, and 5 are very close together. Furthermore, the 
computational complexity of 2D-SPU adaptive filters is 
lower than ordinary algorithms. 

In Table 5, we presented the executing time of the 
proposed algorithms in 2D-ANC for “Simpson” image. 
The processor characteristic of computer was Intel Core 
2 Duo CPU 2.53 GHz with 4.00 GB RAM. The 
parameters of the algorithms are according to Tables 2, 
3 and 4. It is clear that, the executing time of 2D-VSS 
algorithms are further than conventional algorithms. In 
2D-SM-NLMS, the executing time is less than the 

classical 2D adaptive algorithms. In 2D-SPU adaptive 
algorithms, by increasing the parameter S, the executing 
time increases. 

To complete our simulations, we justified the 
presented algorithms in different PSNR. Fig. 13 shows 
the output PSNR versus input PSNR for 2D-LMS, 2D-
NLMS, 2DAPA, 2D-VSS-NLMS, and 2D-VSS-APA. 
The results show that 2D-VSS-APA has better 
performance than other algorithms. In Fig. 14, we 
presented the results for 2D-SPU-NLMS algorithms. As 
we can see, by increasing the parameter S, the output 
PSNR increases. Furthermore, the results for S=3, 4, 
and 5 are very close for different PSNR of input image. 
Figure 15 presents the results for 2D-SPU-APA. This 
figure shows that, the performance for S=2, 3, 4, and 5 
are very close in various PSNR of input images. 
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(a) 
 

(b) 

 
(c) (d) 

 
Fig. 4 Output PSNR of different images versus the step-size for 2D-LMS, 2D-NLMS, and 2D-APA with K=2, L=2. 
(a) Pot (b) Simpson (c) Part (d) Camera man. 

 

To complete our discussion about 2D adaptive 
algorithms, we consider the influence of the order of the 
filter, in 2D adaptive noise cancellation. In Figs. 16, 17 
and 18, we justified the performance of 2D-LMS, 2D-
NLMS and 2D-APA algorithms in different input PSNR 
and various orders of filter. In Fig. 16 the step-size was 
set to = 0.001μ  and cameraman image was used. In 

Fig. 17, we considered = 0.01μ  and Simpson image 
was used and finally in Fig. 18, = 0.01μ  was set and the 
part image was used. The simulation results show that 
by increasing the order of the filter, the output PSNR 
decreases. Also the simulation results show that for 
large values of input PSNR, the PSNR improvement 
decreases. 

 

Table 3 Comparison of PSNR Improvement for 2D-SM Adaptive Filters. 

ALGORITHM IMAGE 
PARAMETER 

PSNR(OUT) 
NUMBER OF 

WEIGHT UPDATE β  

2D-SM-NLMS 

Pot 1 18.47 654 
Simpson 1 17.21 1582 

Part 1 18.21 1348 
Cameraman 1 18.25 752 

2D-SM-APA 
(K=2, L=2) 

Pot 1 20.21 751 
Simpson 1 20.39 1872 

Part 1 23.76 1597 
Cameraman 1 18.10 894 
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Table 4 Comparison of PSNR Improvement for 2D-SPU Adaptive Filters. 

ALGORITHM IMAGE 
PARAMETER PSNR(OUT) IN DIFFERENT NUMBER OF 

BLOCK 
µ S=5 S=4 S=3 S=2 S=1 

2D-SPU-NLMS 

Pot 0.05 14.47 14.32 14.14 13.60 13.22 
Simpson 0.05 14.22 14.09 13.88 13.31 12.67 

Part 0.05 14.26 14.11 13.94 13.37 12.99 
Cameraman 0.05 14.62 14.49 14.30 13.76 13.26 

2D-SPU-APA 

Pot 0.005 20.34 20.23 20.05 19.91 18.59 
Simpson 0.003 21.64 21.42 21.29 21.28 20 

Part 0.003 21.62 21.38 21.29 21.4 19.98 
Cameraman 0.003 20.25 20.09 20.01 20 19.16 

 

 

 
(a) (b) 

 

(c) (d) 
 

Fig. 5 Output PSNR of different images versus the step-size for 2D-SPU-NLMS with S=1, 2, 3, 4, and 5. 
(a) Pot (b) Simpson (c) Part (d) Camera man. 
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(a) (b) 
 

(c) (d) 
Fig. 6 Output PSNR of different images versus the step-size for 2D-SPU-APA with K=2, L=2 and various values for S. 
(a) Pot (b) Simpson (c) Part (d) Camera man. 
 

Table 2 Comparison of PSNR Improvement for 2D Adaptive Filters. 

ALGORITHM IMAGE 
PARAMETERS 

PSNR(OUT) 
µ C γ   

2D-LMS 

Pot 0.001 ------ ------ ------ 13.74 
Simpson 0.001 ------ ------ ------ 13.64 

Part 0.001 ------ ------ ------ 13.69 
Cameraman 0.001 ------ ------ ------ 13.98 

2D-NLMS 

Pot 0.05 ------ ------ ------ 14.47 
Simpson 0.05 ------ ------ ------ 14.22 

Part 0.05 ------ ------ ------ 14.26 
Cameraman 0.05 ------ ------ ------ 14.62 

2D-APA 
(K=2,L=2) 

Pot 0.005 ------ ------ ------ 20.34 
Simpson 0.003 ------ ------ ------ 21.65 

Part 0.003 ------ ------ ------ 21.62 
Cameraman 0.003 ------ ------ ------ 20.25 

2D-VSS-NLMS 

Pot ------ 0.0001 0.99 1 16.18 
Simpson ------ 0.0002 0.99 1 16.34 

Part ------ 0.0001 0.99 1 16.59 
Cameraman ------ 0.0003 0.99 1 16.74 

2D-VSS-APA 
(K=2,L=2) 

Pot ------ 0.01 0.99 1 21.87 
Simpson ------ 0.01 0.99 1 23.35 

Part ------ 0.01 0.99 1 23.59 
Cameraman ------ 0.01 0.99 1 21.39 
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(a) (b) 

 

(c) (d) 
 

 
(e) (f) 

 
Fig. 7 Noisy and restored images by different 2D adaptive filter algorithms. 
(a) Noisy image, Restored images by (b) 2D-LMS (c) 2D-NLMS (d) 2D-VSS-NLMS (e) 2D-APA (f) 2D-VSS-APA. 
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(a) (b) 
 

 

(c) (d) 
 

 
(e) (f) 

Fig. 8 Noisy and restored images by different 2D adaptive filter algorithms. 
(a) Noisy image, Restored images by (b) 2D-LMS (c) 2D-NLMS (d) 2D-VSS-NLMS (e) 2D-APA (f) 2D-VSS-APA. 
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(a) (b) 

 

(c) (d) 
 

 
(e) (f) 

 
Fig. 9 Noisy and restored images by different 2D adaptive filter algorithms. 
(a) Noisy image, Restored images by (b) 2D-LMS (c) 2D-NLMS (d) 2D-VSS-NLMS (e) 2D-APA (f) 2D-VSS-APA. 
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(a) (b) 

 

 
(c) (d) 

 

 

(e) (f) 
Fig. 10 Noisy and restored images by different 2D adaptive filter algorithms. 
(a) Noisy image, Restored images by (b) 2D-LMS (c) 2D-NLMS (d) 2D-VSS-NLMS (e) 2D-APA (f) 2D-VSS-APA. 
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(a) (b) 

 

 

(c) (d) 
Fig. 11 Restored images for different images with 2D-SM-NLMS. 
 
 
Table 5 Executing time of the proposed algorithms in 2D-
ANC. 

ALGORITHM TIME(SECOND) 
2D-LMS 5.87 

2D-NLMS 6.31 
2D-APA (K=L=2) 11.71 
2D-VSS-NLMS 7.94 

2D-VSS-APA(K=L=2) 13.21 
2D-SPU-NLMS (S=3) 5.10 
2D-SPU-NLMS (S=1) 3.31 

2D-SPU-APA (K=L=2, S=3) 10.14 
2D-SPU-APA(K=L=2, S=1) 8.25 

2D-SM-NLMS 5.24 
2D-SM-APA(K=L=2) 10.04 

 

6   Conclusion 
In this paper we presented several 2D adaptive filter 

algorithms. The presented algorithms are 2D-VSS-
NLMS, 2D-VSS-APA, 2D-SPU-NLMS, 2D-SPU-APA, 
2D-SM-NLMS, and 2D-SM-APA. The performance of 
these algorithms was demonstrated in 2D adaptive noise 
cancellation setup. The simulation results showed that 
the 2D-VSS adaptive filter algorithms have good ability 
for elimination of noise in digital images. Also, the 2D-
SPU adaptive filters have low computational complexity 
and have close performance to classical 2D adaptive 
filters. In 2D-SM adaptive filters, the number of filter 
coefficients in update is related to the specific condition 
which leads to reduction in computational complexity. 
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(a) (b) 

 

 
(c) (d) 

Fig. 12 Restored images for different images with 2D-SM-APA. 
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(c) (d) 
 

Fig. 13 Output PSNR versus input PSNR for 2D-LMS, 2D-NLMS, 2D-APA, 2D-VSS-NLMS, and 2D-VSS-APA. 
(a) Pot (b) Simpson (c) part (d) cameraman. 
 
 
 

 
(a) (b) 

 

 
(c) (d) 

 
Fig. 14 Output PSNR versus input PSNR for 2D-SPU-NLMS with S=1, 2, 3, 4, and 5. 
(a) Pot (b) Simpson (c) part (d) cameraman. 
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(a) (b) 
 

 
(c) (d) 

Fig. 15 Output PSNR versus input PSNR for 2D-SPU-APA with S=1, 2, 3, 4, and 5. 
(a) Pot (b) Simpson (c) part (d) cameraman. 
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Fig. 16 Input PSNR versus output PSNR for various order of 
filter in 2D-LMS algorithm. 
 

 
Fig. 17 Input PSNR versus output PSNR for various order of 
filter in 2D-NLMS algorithm. 
 

 
Fig. 18 Input PSNR versus output PSNR for various order of 
filter in 2D-APA algorithm. 
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