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Abstract: In this paper, we report the simulation results for impact of nonlinear Kerr effect 
on band structures of a two dimensional photonic crystal (2D-PhC) with no defect, a PhC 
based W1-waveguide (W1W), and also Coupled-Cavity Waveguides (CCWs). All PhC 
structures are assumed to a square lattice of constant a made of GaAs rods of radius r=0.2a, 
in an air background. The numerical simulation was performed using the nonlinear finite 
difference time domain (NFDTD) technique. In doing so, we have normalized the electric 
field and the electric flux density vectors, and used a multi probe procedure. These have 
resulted in very accurate dispersion relations that, in turn, have enabled us to make some 
novel observations. For instance, simulations show that with an increase in the input light 
intensity (in the nonlinear regime) the band edges for all three PhC structures experience 
some red shifts. The red shifts observed for CCWs are, of course, larger than the red shifts 
experienced by other two structures. Furthermore, the numerical results for CCWs also 
show that the larger the light input intensity, the smaller the corresponding maximum light 
group velocity becomes. To the best of our knowledge, this is the first instance that such 
observations on the impact of the nonlinear Kerr effect on the band diagram of 2D-PhC 
waveguides are reported. 
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1 Introduction

 
 

Manipulating nonlinear optical materials for enabling 
all-optical control of light propagation in optical devices 
has been of particular interest in recent years [1,2]. This 
can lead to all-optical logic gates, all-optical signal 
processing, and all-optical photonic chips. Among the 
well known platforms for designing these all-optical 
devises, photonic crystal (PhC) platform offers 
additional capabilities [3-7]. In PhC platform the light 
dispersion characteristic can easily be controlled. Such a 
control can be beneficial in reducing the speed of light 
significantly that is required in producing so-called slow 
light [7]. 
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On the other hand, the major researches on optical 
devices focus on Si and GaAs due to their developed 
fabrication processes, integration capabilities, and 
nonlinear properties. Crystal inversion symmetry, in Si 
and GaAs, causes the second order nonlinear effects to 
vanish. However, the third order effect such as Kerr 
effect becomes important in these materials. Such a 
nonlinear effect that depends on the intensity of the 
incident light, can be used to make novel optical devices 
[5-7, 10-12]. 

Utilizing suitable designed PhC structures such as 
Coupled-Cavities Waveguide (CCW), has made it 
possible to achieve a greatly reduced group velocity. 
This, in turn, has significantly improved the nonlinear 
effects due to the slow light enhancement [7]. 

All these make numerical simulation of nonlinear 
PhCs crucial for designing new all-optical devices based 
on either Si or GaAs. Simplicity of implementation and 
the ability of considering nonlinearities, anisotropy, and 
even material dispersion are some advantages that make 
finite-difference time-domain (FDTD) method [8] one 
of the most suitable numerical tools for this task. 
However, the main drawback of this method is the 
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memory criteria and simulation time, which completely 
depends upon size of computational domain [8-10]. 

Recently, some research groups have used the plane 
wave expansion (PWE) [13-15] and the FDTD [16] 
methods for extracting the band structures of the slow 
light PhC waveguides. Meanwhile, others have utilized 
the nonlinear finite difference time domain (NFDTD) 
technique to study the impact of the Kerr effect on the 
PhC-waveguides band diagrams [17], behavior of some 
all optical devices [18,19], third harmonic generation 
[20], and hysteresis phenomenon [21]. However, none 
of them have considered the impact of the nonlinear 
Kerr effect on the band diagram of the PhC structures, 
except [17] which results are not accurate enough to 
obtain the group velocity curves in detail. In this paper, 
we have used the NFDTD method to demonstrate how 
strong the Kerr effect affects the band structures of 
various 2D PhC waveguides in the slow light regime. In 
order to solve the required differential equation for 
calculating the band structures in presence of the 
nonlinear Kerr effect, we have employed the periodic 
boundary condition (PBC) [22] and the Perfect Match 
Layer (PML) [23] techniques. In our calculations, we 
have also used the unit cell or super cell approach, as 
required. 

The rest of this paper is organized as follows: 
Section 2 is dedicated to the numerical method, in 
which the Yee's standard FDTD algorithm [24] is 
modified to consider nonlinear Kerr effect. In Section 3, 
we present the simulation results on various PhC 
structures with a detailed discussion for each case. 
Finally this paper is closed by a conclusion in Section 4. 
 
2 Numerical Model 

Introducing 0 0ε μ as a normalizing factor for 
obtaining the normalized quantities for electric field, E, 
magnetic field, H, and electric flux density, D, as in [8], 
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where μ0 and ε0 are the free space permeability and 
permittivity. Notice that the normalization factor of 
magnetic field is unity. For a Kerr-like nonlinear 
material with inversion symmetry at molecular level, 
such as Si, GaAs, KD*P, and liquid crystals, in which 
the second order susceptibility vanishes, relation 
between the normalized electric field and flux density is 
reduced to [1] 
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in which εr is the intensity independent relative 
dielectric constant of the nonlinear media, and (3)χ%  is 
normalized third order susceptibility given by [1] 
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where n2 is the nonlinear refractive index, in m2/W. 
Such normalization helps to minimize the numerical 
errors when solving the Maxwell's equations by FDTD 
method. Restricting our analysis to a two dimensional 
situation (i.e. x-y plane), Maxwell's equations in such a 
nonmagnetic medium can either be written as, 
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for TM mode (E-polarized) for which Ex = Ey = Hz = 0, 
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for TE mode (H-polarized) for which Hx = Hy = Ez = 0. 

To solve Eqs. (6)-(9) or (10)-(13) by FDTD 
numerical method, one should discretize them in both 
time and space. Such discretization can easily be 
performed under Yee’s cell algorithm [24]. However, in 
this case we consider the electric flux density equation 
instead of the one for electric field. For example, 
assuming the TM mode, one can write 
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where superscript n represents the time index, Δt is the 
time step, Δx and Δy are the grid spacing, and finally i 
and j represent the grid coordinates in x and y directions, 
respectively. The discretized equations for TE mode can 
be obtained in the same manner. As demonstrated by 
[10], solving the constitutive relation implicitly is the 
main new step in the NFDTD method added to the 
conventional Yee's algorithm, which can be 
implemented by a numerical iterative method like 
Newton-Raphson method in general form, or an 
inversing function. The standard Yee’s FDTD algorithm 
is stable under the Courant’s stability condition [25], 
stated that the numerical propagation velocity must be 
greater than the maximum phase velocity of the 
electromagnetic waves in the structure, vpmax. For a 2D 
structure, this condition can be written as 
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Details of the stability condition for NFDTD 
algorithm for nonlinear materials are discussed in [10]. 
It is shown that for any nonlinear material with (3) 0χ >  
(i.e., for any positive Kerr materials), Courant’s stability 
condition is still sufficient for code stability, due to the 
decreased local phase velocity of light in these 
materials. Since the maximum phase velocity, vpmax, in 
the media under investigation, is always smaller than 
the velocity of light in the free space, c, so we can 
rewrite (18) as 
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which satisfies the stability condition of (19), Eqs. (14) 
to (17) can be simplified,  
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The corresponding equations for TE mode can be 
also simplified by a similar manner. 

Relation between the optical signal intensity, I(ω), 
of radian frequency ω and the normalized electric field 
intensity is given by 
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r 0 rI 2 c E 2 Eω ε ε ω ε ω= ≡ %

 (25) 
With the typical values of χ(3) or Kerr constants for 

GaAs and Si given in [1] the optical input intensity to be 
in the nonlinear regime should be in the order of GW-
cm2. 

Solving Eqs. (21)-(24) in a suitable computational 
domain with appropriate boundary conditions, one can 
obtain the photonic band structure or dispersion relation, 
numerically. The procedure is the same as what is done 
in a linear regime, except for the NFDTD equations that 
are used instead of the linear FDTD’s, and also the use 
of multi probe procedure in the process. Starting with an 
appropriate k-vector in the first Brillouin zone, the 
NFDTD algorithm is executed over the entire time 
steps, iteratively over the entire irreducible Brillouin 
zone. Depending on the chosen k-vector and the 
computational domain the boundary conditions are 
taken to be either PBC or PML. In order to obtain the 
dispersion curves or band diagrams, the electric field 
components are saved in each time step, for several 
minimum symmetry points, and then converted into the 
frequency domain by means of a Fast Fourier Transform 
(FFT). In order to obtain achieve high accuracy and 
avoid possible omission eigenvalues, we have post 
processed all frequency responses, by implementing a 
multi-probe procedure. This has enabled us obtain more 
complete and accurate dispersion curves in comparison 
to those obtained by [17] and hence enables us to 
achieve accurate group velocity curves in nonlinear 
regime, especially for CCWs. 
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3 Results and Discussion 
In this simulation, the PhCs are assumed to be two 

dimensional (2D) with a square lattice of constant a 
made of GaAs rods of radius r=0.2a in air background. 
The physical and geometrical parameters of the PhC 
structures used in this simulation are tabulated in Table 
1. 

Figure 1 illustrates a schematically cross-sectional 
view of the PhC lattice and the corresponding first 
Brillouin zone. The shaded region in Fig. 1(a) illustrates 
the lattice unit cell that represents the computational 
domain whose borders are terminated by PBC. The 
shaded region in Fig. 1(b) illustrates the corresponding 
irreducible Brillouin zone. The structures under studies 
are: a conventional PhC without any defect, a PhC-W1-
waveguide (PhC-W1W), and three different PhC 
coupled-cavity waveguides (PhC-CCWs). The light 
mode propagating in all three waveguides are assumed 
to be E-polarized (TM). Light input intensities in the 
range of 0.5 GW-cm−2≤I≤ 25 GW-cm−2 were used for 
all five structures. 

 
3.1 Conventional PhC 

First, in order to examine the impact of Kerr effect 
on the band structure a conventional PhC waveguide, 
we employ three different input light intensities in the 
nonlinear regime, given in Table 1. 

Figure 2 illustrates and compares the resulting band 
structures. To our expectation, as seen in Fig. 2, an 
increase in the input light intensity causes a red shift in 
the band edge. In fact, at higher intensities the 
waveguide effective index is more enhanced. This, in 
turn, reduces the waveguide cut-off wavelength. As a 
result the larger the increase in intensity the more 
enhanced is the red shift. Furthermore, this figure shows 
that in the region where the bands are flatter the red 
shift is also enhanced. In fact, the flatter the band 
structure, the slower is the light group velocity (vg = 
∂ω/∂k) in that region. On the other hand, the slower 
light has more time to interact with the nonlinear 
material along the path it propagates. Hence, the slower 
the light, the more chance it has to enhance the Kerr 
effect and hence increases the red shift. In comparison 
to the numerical results obtained by [17], the red shifts 
in the band structures are very similar, but we have 
obtained more precise and also complete k vector band 
structure. 

 
3.2 2D-PhC-W1W 

In this section, we simulate the band structure of a 
nonlinear 2D PhC based W1W. This waveguide is made 
by creating a line defect along the ΓΧ direction in a 
conventional 2D PhC-waveguide. A line defect in a 
pillar based PhC structure is created by removing a row 
of rods in any direction. A schematic cross sectional 
view of a 2D PhC-W1W is illustrated in Fig. 3(a). The 
shaded area, shown in this figure, represents the 
simulation domain. By utilizing the super cell approach, 
the boundaries of this domain in x and y directions are 
terminated by PBC and PML, respectively. 

Figure 3(b) illustrates the simulated band structures 
of W1W for the three input intensities mentioned 
earlier. In order to observe the changes in band structure 
more conveniently, the portion of the band structure 
surrounded by the dashed rectangle is zoomed out and 
illustrated in Fig. 3(c). In this illustration, the folded 
band regions are not shown. The red shift induced by 
the Kerr effect in the band edges for the higher input 

Table 1 Geometrical and physical parameters of the PhC 
structures used in the simulation. 
Parameter Description Value Unit 

a Lattice constant 350 nm 
r Rods diameter 70 nm 
n0 linear refractive index 

(GaAs) 
3.4 − 

n2 Kerr coefficient 
(GaAs) 

3.3 10–13
 cm2-W−1 

 
  

(a)                                                       (b) 
 

Fig. 1 (a) A schematic cross-sectional view of the 2D PhC 
structure with a square lattice whose unit cell is shown by the 
shaded region; (b) The first Brillouin zone of the 2D PhC of 
Fig. 1(a) whose irreducible Brillouin zone is shown by 
shaded region. 

 
 

Fig. 2 The three first photonic band structures for the 2D-PhC 
of Fig. 1, obtained under three different E-polarized 
illumination with peak input intensities of 0.5GW-cm−2 
(hollow circles), 10GW-cm−2 (diamonds), and 25GW-cm−2 
(stars) are compared. 
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intensities can also be observed, similar to the 
observation made for the conventional PhC waveguide. 
However, due to the difference in the effective indices 
of these two waveguide structures, the size of the red 
shift caused by a given increase in the light intensity is 
not the same as before. In fact, the red shift observed in 
Fig. 3(c), in the band edges corresponding to the two 
higher input intensities, are smaller than those observed 
in Fig. 2(b) obtained under similar conditions. In fact, 
by removing a row of GaAs Pillars the Kerr effect has 
become less effective in the PhC-W1W. Figure 3(d) 
illustrates the normalized group velocity of the lights 
propagating in the nonlinear W1W versus the 
normalized frequency. The flat regions shown in Fig. 
3(c) that represent the slow light regions are 
experiencing the largest red shifts. Also observed in Fig. 
3(d), are the maximum group velocities of around 

vg~0.47c. As explained before, in this case also, the 
minimum red shifts in the band edges occur where the 
group velocities are maximized. The range of the 
operating bandwidths (normalized and absolute 
frequencies) for E-polarized light modes with intensities 
in the range of 0.5GW-cm–2≤I≤25GW-cm–2 propagating 
along the W1W of Fig. 3(a) is given Table 2. Also given 
in this table is the average red shift in the band edges 
corresponding to the minimum and maximum group 
velocities, induced by an increase of ΔI= 1GW-cm–2 in 
the light intensity. The lattice periodicity is given in 
Table 1. In comparison to the numerical results obtained 
by [17], our results demonstrate more red shifts for all 
normalized k vectors, especially in the flat regions of 
the dispersion curve. In addition, we have achieved the 
group velocity curves in nonlinear regime, which are 
not obtained in [17]. 

 
(a)                                                                                                          (b) 

 

 
 (c) (d) 

 
Fig. 3 (a) A schematic cross-sectional view of a 2D-PhC-W1W. The shaded region represents the computational domain 
(the super cell) whose boundaries are defined PBC and PML in x and y directions, respectively. (b) The simulated band 
structures of the waveguide of Fig. 3(a) under three different light intensities. (c) Zoomed out portion of the three 
dispersion curves, surrounded by the dashed rectangle shown in Fig. 3 (b), while ignoring the folded bands. (d) 
Normalized group velocities of the three E-polarized lights, propagating along W1W of Fig. 3(a), versus the normalized 
frequency. 
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3.3 2D-PhC-CCWs 
Exhibition of slow light in 2D-PhC-CCWs has made 

them a suitable platform for investigating nonlinear 
effects [5-7]. A 2D-PhC-(CCW) is usually made by 
creating equally spaced point defects in a row of 2D-
PhC, in any direction. A point defect in a pillar based 
2D-PhC is created by removal of a rod from the 
structure. Figure 4 illustrates three different CCW1, 
CCW2, and CCW3 with cavity spacing of L=2a, 3a, 
and 4a, respectively. The highlighted region in each 
case illustrates the super cell (the computational 
domain) whose boundaries in x and y directions are 
terminated by PBC and PML, respectively. 

In this section, first, we present the dispersion curves 
simulated for all three CCWs of Fig. 4, obtained under 
illuminations by the aforementioned three E-polarized 
lights. Figure 5 illustrates these results, ignoring the 
folded bands. As can be observed in Fig. 5, in addition 
to the enhancement of the red shifts in band edges due 
to the increased input intensities in a particular CCW, an 
increase in the cavity spacing (L) of a CCW causes the 
dispersion curves to be flattened over a wider range of 
wave vectors along the propagation direction. In other 
words, the larger the cavity spacing L, the slower is the 
light group velocity propagating throughout the CCW. 
This is demonstrated in Fig. 6, which illustrates the 
normalized group velocities of the lights versus the 
normalized frequency, corresponding to the dispersion 
curves of Fig. 5. As we have discussed for the other 
waveguide structures, this means that the light in the 
CCW with larger L has more time to interact with the 
waveguide nonlinearity, and hence enhances the red 
shift. This is due to the fact that the larger the cavity 
spacing the larger is the effective index of the CCW. In 
other words, larger L means removal of less nonlinear 
materials that are replaced by air. Comparison of the 
corresponding group velocities for the three CCWs 
illustrated in Fig. 6 also shows this. As observed in this 
comparison, an increase of ΔL=a in the cavity spacing 
has resulted in reduction of the maximum group 
velocities by more than three times, for all three input. 
In fact, the larger is the cavity spacing the longer it takes 
for a cavity to amplify the light before it can be coupled 
to the neighboring cavity. This, in turn, increases the 
light interaction with the nonlinear material even 
further. Furthermore, as the light input intensity in a 
particular CCW structure increases the corresponding 
maximum group velocity decreases. 

Also observed, in Fig. 6, is the effect of the 
variations in the cavity spacing on the CCWs’ operating 
bandwidths. As the cavity spacing in a given structure 
increases the corresponding bandwidth for a light mode 
of a given intensity decreases. Furthermore, as the light 
mode intensity in a given structure increases the 
operating bandwidth decrease. The range of the 
operating bandwidths (normalized and absolute 
frequencies) for the E-polarized light modes with 

intensities of 0.5GW-cm–2≤I≤25GW-cm–2 propagating 
along the three CCWs of Fig. 4, is given in Table 2. 
 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 4 Schematic representation of cross sectional views 
of 2D PhC CCW with: (a) L=2a; (b) L=3a; and (c) L=4a. 
The shaded region in each case, illustrates the super 
lattice (the computational domain) whose boundaries in x 
and y directions are terminated by PBC and PML 
respectively. 
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(a) 

 
 (b) 

 
 (c) 
Fig.6 Normalized group velocities of E-polarized lights of 
various input intensities propagating throughout the 
CCWs of cavity spacing corresponding to the band 
structures of Fig. 5 versus the normalized frequency: (a) 
L=2a, (b) L=3a, and (c) L=4a. 

 

 
 

 

Table 2 The range of the operating bandwidths (normalized and absolute frequencies) for the E-polarized light modes of 
intensities in the range of 0.5GW-cm–2≤I≤25GW-cm–2 propagating along the W1W of Fig 3(a) and the CCW’s of Fig. 4. 
Also shown are the average red shifts in the band edges corresponding to the minimum and maximum group velocities, 
induced by an increase of ΔI=1GW-cm–2 in the light intensity. The PhCs’ lattice parameters are given in Table 1. 

PhC 
Bandwidth Average Red Shift  

per GW-cm–2 (|Δf/ΔI|) 

Δfnorm Δf (THz) Normalized MHz 
at vgmin at vgmax at vgmin at vgmax 

WW1 0.1083-0.1085 92.83-93 6.7×10–4 8.8×10–4 577.3 752.2 
CCW1 0.0332-0.0352 28.46-30.17 5.6×10–4 6.4×10–4 475.8 552.8 
CCW2 0.0104-0.0111 8.91-9.51 4.5×10–4 4.8×10–4 384.8 409.3 
CCW3 0.0032-0.0036 2.74-3.09 4.7×10–4 4.8×10–4 402.3 409.3 

† These values are calculated for I=0.5MW-cm–2. 

 
(a) 

 
 (b) 

 
 (c) 
Fig. 5 Illustration of the dispersion curves for the 2D PhC 
CCWs with cavity spacing of (a) L=2a; (b) L=3a; and (c) 
L=4a, simulated under illumination by the same E-
polarized lights used for previous case. For the illustrative 
purposes, the folded bands are ignored. 
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Also given in this table are the average red shifts in 
the band edges corresponding to the minimum and 
maximum group velocities, induced by an increase of 
ΔI=1GW-cm–2 in the light intensity. The intensity 
dependence of the operating frequency bandwidth for a 
particular PhC-CCW structure shows the capability of 
such waveguides for designing all-optical devices that 
can be dynamically controlled. 

In comparison to the numerical results for CCW2 
obtained by [17], our results demonstrate more flat 
dispersion relations and also more red shifts for all 
normalized k vectors. In addition, we have achieved the 
group velocity curves in nonlinear regime. These results 
demonstrate that the sensitivity of the frequency 
bandwidth in terms of the light intensity in CCW2 is far 
more than the results of [17]. 
 
4 Conclusion 

We have shown that the NFDTD method is capable 
of simulating the band structure of the nonlinear PhC 
structures. The band structure of a nonlinear Kerr effect 
2D PhC structure is simulated and the dependence of 
the bands on the input field is observed. The bands and 
the bandgap are red shifted by the increasing the input 
field intensity. This red shift can be explained by the 
intensity dependant refractive index and group velocity 
of light in the structure, which is relative to the slope of 
the bands. We have also obtained the dispersion relation 
of the nonlinear Kerr effect PhC conventional W1 and 
CCWs, using the NFDTD method. The corresponding 
red shifts of dispersion curves, which are dependent on 
the input field intensity, have been demonstrated. 
Simulations show that the red shift is larger where the 
dispersion curves are flatter. This is due to the reduced 
group velocity of light and more time for the 
propagating light to interact with the nonlinear material. 
Two interesting effects consist of the reduction in the 
group velocity of light, and the severe variation in the 
frequency ranges of the propagating light in the CCWs, 
both by increasing the input field intensity, have been 
seen in the simulation results. The former has been 
explained by the intensity dependant refractive index, 
and the later seems to be useful in designing all-optical 
dynamically controlled devices. 

Utilization of a multi-probe procedure, and post 
processing of the FFT responses in NFDTD algorithm, 
has made it possible to obtain highly accurate and 
complete band diagrams, resulting in accurate group 
velocity curves, specifically for CCWs. 
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