
Iranian Journal of Electrical & Electronic Engineering, Vol. 22, No. 01, March 2026     1 

Iranian Journal of Electrical and Electronic Engineering 01. (2026) 3691  

 

Enhancement of Sparse Spasmodic Sampling using Novel 
Machine Learning Fusion Technique 
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Abstract: This research explores the demands of compressive sensing (CS) and 
Machine learning (ML) in biomedical signal processing. The sparse spasmodic sampling 
(SSS) technique has gained significant attention in compressive sensing. The SSS 
samples the signal irregularly and spasmodically. Combining machine learning (ML) 
with Sparse Spasmodic Sampling (SSS) enhances accuracy and improves anomaly 
detection in biomedical signals. We propose a machine learning-based novel fusion 
technique that enhances sparse spasmodic sampling (ML-SSS). Mathematical analysis, 
extensive simulations, and experimental results show notable improvements in 
reconstruction accuracy and precision. The reconstruction using the proposed model 
achieves a high signal-to-noise ratio (SNR) of up to 42 dB at a high compression factor 
of 10%. The achieved accuracy is approximately 95%, and the precision is about 93.3% 
when detecting abnormalities. This approach paves the way for advanced applications in 
signal processing and medical imaging, where efficient data acquisition and processing 
are critical. The proposed framework offers a promising direction for bridging the gap 
between compressive sensing and intelligent algorithms in anomaly detection. 

Keywords: Compressive Sensing, Electrocardiogram (ECG), Sparse Spasmodic 
Sampling, Machine Learning, Anomaly Detection, Fusion Technique. 

 

1  Introduction 

n the biomedical domain, Electrocardiography 
(ECG) is a crucial monitoring tool which provides 

essential insights into cardiac health. In ECG signals, 
there are three different stages: P wave, QRS complex, 
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and T segment, which represent atrial contraction, 
ventricular contraction, and relaxation [1], [2]. From the 
morphological features of the ECG, the detection of 
various cardiac conditions, including heart blocks, is 
possible, as shown in Table 1. 

Table 1. Morphological features in normal ECG. 
Characteristics Amplitude (mV) Duration (sec) 

P 0.25 0.11 

R 1.6 - 

Q 0.4 0.03 

T 0.1-0.5 0.16 

S 1.8-3  

PP - 0.6 - 1.04 

PR - 0.12 - 0.2 

QT - 0.35 – 44 

ST - 0.05 - 0.15 

QRS 1 0.08 - 0.1 

RR - 0.6 - 1.2 

I 
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Heart block is a cardiac conduction disorder classified 
into three types: first-degree, second-degree, and third-
degree [3], [4], [5]. ECG analysis of these blocks 
facilitates the early detection of conditions such as heart 
failure or cardiac arrest. 

In the first-degree block, the PR interval exceeds 0.2 
seconds, but conduction to the ventricles remains intact. 
It is often benign and requires no treatment. The second-
degree block involves intermittent failure of ventricular 
conduction, seen as dropped QRS complexes. It 
includes: Mobitz I (Wenckebach): Gradual PR 
prolongation followed by a missed QRS. Mobitz II: 
Constant PR intervals with sudden QRS drops. 2:1 or 3:1 
conduction: One or two missed QRS complexes after 
regular cycles. The third-degree block shows complete 
AV dissociation. P waves and QRS complexes occur 
independently, with a slow but regular rhythm 
maintained by a junctional or ventricular pacemaker [2]. 

In all types, R-R interval patterns reflect disrupted 
atrioventricular conduction: regular but prolonged in 
first-degree, irregular in second-degree, and regular but 
slow in third-degree blocks. 

Recent advances in signal processing and computing 
have improved ECG analysis. Detecting heart block is 
now more accurate. New methods enable the detection 
of more precise abnormality detection [1]. Recent 
studies have focused on utilising advanced techniques, 
such as compressive sensing (CS) and machine learning 
(ML), to enhance ECG acquisition, noise reduction, 
feature extraction, and interpretation. CS is particularly 
useful in addressing limitations in resource-constrained 
settings and strengthening overall performance [6]. 

Nowadays, researchers are focusing on applying 
compressed sensing techniques to biomedical signals. 
Compressive Sensing (CS) has evolved as a crucial 
signal-processing technique [6], [7], [8], [9], [10], [11]. 
The CS enables the acquisition and reconstruction of 
sparse signals using fewer samples than the traditional 
Nyquist-Shannon sampling theorem.  

Compressed sensing (CS) exploits the sparsity of 
signals in certain transformed domains. At the receiver 
end, CS uses mathematical models to reconstruct the 
original signal [12], [13], [14], [15], [16]. This 
framework is widely applied in biomedical signal 
acquisition, reconstruction, feature extraction, and 
classification. CS helps overcome significant challenges 
by enabling faster signal acquisition, higher accuracy, 
and better energy efficiency [17], [18], [19], [20], [21], 
[22], [23], [24], [25], [26]. 

Recent advances in compressive sensing (CS) use 
machine learning (ML) to boost signal reconstruction, 
robustness, and efficiency. ML-based sparse 
representation learning also improves resistance to noise 

and outliers. However, challenges in generalization and 
computational efficiency remain, necessitating hybrid 
approaches for broader applicability [27], [28], [29], 
[30], [31]. This paper focuses on the use of machine 
learning (ML) enhanced sparse spasmodic sampling 
(SSS). The SSS samples the sparse signal irregularly. 

Additionally, ML has excellent potential in handling 
sparse, noisy, and irregular data. These models are 
capable of learning basic patterns from the data and help 
identify abnormalities. The ML-based SSS can 
overcome the traditional signal reconstruction methods. 

The remainder of the paper is organized as follows. 
Section 2 proposed a novel ML-enhanced Sparse 
Spasmodic sampling technique. Section 3 has the 
experimental results of the proposed algorithm on ECG 
signal. The paper concluded in section 4. 

2 ML-enhanced sparse spasmodic sampling (ML-SSS) 

Compressive Sensing (CS) is a signal processing 
technique that enables the acquisition and reconstruction 
of sparse signals using compressed samples [21], [22], 
[23], [24]. Sparse Spasmodic Sampling (SSS) is a 
compressive sensing-based technique used in signal 
processing. It samples the signal intermittently using 
sparsity criteria, which lowers the number of samples 
needed for accurate reconstruction. This method is 
particularly beneficial in applications such as wireless 
sensor networks and medical devices. 

Sparse Spasmodic Sampling (SSS) focuses on 
irregularly spaced sampling intervals. This unique 
strategy differentiates it from non-uniform sampling and 
random sampling techniques. It samples the data 
intelligently whenever a zero-to-non-zero component 
occurs or vice versa. Hence, the SSS technique does not 
miss the non-zero elements in the sparse signal, which is 
not possible in non-uniform or random sampling 
techniques [23], [24]. It concentrates on capturing 
significant signal features at selected time points. The 
SSS has shown promise in various domains, including 
biomedical, communications and sensor networks. The 
main advantage of SSS is its ability to reconstruct 
signals with minimal data, reducing storage and 
transmission costs. It is especially effective when the 
signal is sparse, with most of the information 
concentrated in a few components. The detailed steps of 
the algorithm are outlined below in Algorithm 1. 

The flowchart in Fig. 1 illustrates the sparse spasmodic 
sampling process. The process begins with the 
initialisation of input data, followed by normalisation 
and quantisation. Further, it checks for availability for 
further processing. The level detection compares 
previously stored data with current data. Based on this 
comparison, it stores the samples irregularly. The 
process continues until it meets a specific stopping 
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condition, at which point it terminates. This structured 
approach enables data to be processed iteratively. 
 

Algorithm 1: Sparse Spasmodic Sampling (SSS) 

Input: 
    - x: input data sample 
 
Output: 
    - y: measurement vector 
 
Steps: 

1. Store the starting point and its index position 
 

2. Check the next value which differs from the 
first value (if the starting point is 0, then store 
the next value if it is ‘1’ and vice versa) 
 

3. If the next value is stored, then store its index 
position. 

 
4. Continues until transitions occur from 0 to 1 

and 1 to 0; otherwise, skip points. 
 

5. Store all the sampled points till the last value 
occurred. 

 
6. Store the last value as sampled points 

 
7. Return y 

 
 

In various fields, such as healthcare, anomaly detection 
is a crucial task. To identify anomalies, it is essential to 
identify irregular patterns in data. Researchers have 
proposed various anomaly detection algorithms, 
including DBSCAN [28], hierarchical clustering [29], K-
means and SVD [4], Isolation Forest [32], and Local 
Outlier Factor [33], [34], [35], [36], [37]. 

Clustering-based methods, such as K-Means, are 
effective for grouping data into regular patterns. 
However, it may be difficult for them to detect high-
dimensional outliers. The Isolation Forest (IF) identifies 
anomalies by measuring the separation between data 
points. The Isolation Forest (IF) is a tree-based model 
that identifies global anomalies but struggles to capture 
local variations in the data. Density-based techniques, 
such as Local Outlier Factor (LOF), are susceptible to 
parameter tuning; hence, large datasets may result in 
inefficient scaling. The comparison of traditional 
Anomaly detection ML algorithms is given in Table 2. 

Where, n is number of data points, k is number of 
clusters, d is dimensionality, i is number of iterations, t 
is number of trees, ψ is subsample size (typically ψ≪n) 

 

Table 2. Comparison of Traditional Anomaly detection ML 
Algorithm 

Approach Time 
Complexity 

Space 
Complexity Pros Cons 

k-mean 
Clustering 

𝒪𝒪(𝑛𝑛. 𝑘𝑘.  𝑑𝑑. 𝑖𝑖) 𝒪𝒪(𝑛𝑛.𝑑𝑑
+ 𝑘𝑘.𝑑𝑑) 

Fast, 
Simple 

Assumes 
Spherical 
clusters 

Isola�on 
Forest 

𝒪𝒪(𝑡𝑡.𝜓𝜓. log(𝜓𝜓)) 𝒪𝒪(𝑡𝑡.𝜓𝜓) Scalable 
Random 
Sampling 

Local 
Outlier 
Factor 

𝒪𝒪(𝑛𝑛2) 𝒪𝒪(𝑛𝑛) 
Local 

sensi�vity 

Expensive 
for large 

data 

 

 

 
Fig 1. Flow chart of Sparse Spasmodic Sampling 

This paper proposes a novel fusion-based approach 
that combines K-Means, Isolation Forest (IF), and Local 
Outlier Factor (LOF). This fusion technique helps to 
detect anomalies. The fusion technique addresses all the 
limitations of the individual algorithms. Machine 
learning can effectively handle sparse, noisy, and 
irregular data. Learning underlying patterns can improve 
sparse signal reconstruction. The detailed steps of the 
algorithm are outlined in Algorithm 2 below. The 
flowchart in Fig. 2 outlines the steps for detecting 
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anomalies in ECG signals using a fusion-based 
algorithm. It begins with sampled data from the SSS 
technique. It calculates the R-R interval and labels it as 
normal or abnormal. Then, a fusion-based algorithm is 
applied to detect anomalies from R-R intervals. 

 

 
 

Fig 2. Flow chart of Fusion-based anomaly detection 

 
Algorithm 2: Fusion-based anomaly detection 
algorithm (ML- SSS) 

Input: 
    - y: measurement vector  
 
Output: 
    - x: input data sample 
    - Abnormalities 
 
Steps: 

1. Initialise with measurement vector 
2. Calculate RR interval at each occurrence 
3. Label RR interval as normal or abnormal 

interval 
4. The fusion technique detects abnormal RR 

intervals from the SSS output. 
5. Returns x with abnormalities 

 

An ECG signal 𝑥𝑥 ∈  𝑅𝑅𝑁𝑁 is sparse in its time domain, 
has only 𝑘𝑘 ≪ 𝑁𝑁 where k is the number of non-zero 
coefficients and N is the total measurements, as in Eq. 
(1).  

𝑥𝑥[𝑛𝑛] … 𝑛𝑛 = 1, 2, 3 … 𝑁𝑁  (1) 
 

Using the SSS technique, compressed samples were 
achieved as in Eq. (2)  

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖) ∶ 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖 ∈ 𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢     (2) 

𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

The sparse signal 𝑥𝑥 have k non-zero elements. Then, 
the signal can be equivalently represented as a pair of 
vectors, as in Eq. (3): 

𝑥𝑥𝑖𝑖 =  �𝑥𝑥
′,      𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

0,                             𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  (3) 

Compressed Samples (𝑥𝑥′) as 
𝑥𝑥′ = [0, 𝑥𝑥𝑖𝑖1, 0, 𝑥𝑥𝑖𝑖3, 0, … ]    

 
Support set (index position of sampled values) 

𝑖𝑖 = [𝑖𝑖0, 𝑖𝑖1, 𝑖𝑖2, 𝑖𝑖3, 𝑖𝑖4, 𝑖𝑖5, … ]    
 

The sensing process is incoherent in CS. The 
measurement vector y sparsely represents the x using the 
sensing metric 𝜑𝜑 [22], as in Eq. (4). 

𝑦𝑦 =  𝜑𝜑 𝑥𝑥    (4) 
 

The SSS detects the R-peaks from the ECG signal 
which further process with the Vandermonde sensing 
matrix [24]. The sparse signal can be reconstructed by 
placing the values from 𝑥𝑥′ at the positions specified in 𝑖𝑖, 
and setting all other positions to zero.  

For example, if sparse signal 𝑥𝑥𝑖𝑖 

𝑥𝑥𝑖𝑖 = [0, 0, 0, 1, 0, 0, 1, 0, 0, 0] 

 

𝑥𝑥1′ = �1, 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  ℎ𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
0,                                                               𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

 

𝑥𝑥1′ = [𝑎𝑎𝑎𝑎𝑎𝑎(𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖[𝑖𝑖, ∶] ≠ 0]𝑖𝑖=15  

Vectorized as  

𝑥𝑥1′ =  ���𝑦𝑦𝑖𝑖𝑖𝑖� > 0
5

𝑖𝑖=1

�  ∀𝑖𝑖∈ {0, … , 5} 

 

𝑥𝑥′ =  [0, 1, 0, 1, 0, 0] 
Support set (𝑖𝑖) is  

𝑖𝑖 = [0, 3, 4, 6, 7, 9] 
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In the Compressive sensing-based novel Sparse 
Spasmodic Sampling (SSS) reconstruction approach, the 
reconstruction of the ECG signal is accurately possible 
due to the Vandermonde sensing matrix. The 
measurement vector y can be reconstructed by 
multiplying the index locations of non-zero components 
with the Vandermonde matrix of compressed sampled 
components (x') from x, as in Eq. (5). 

𝑦𝑦 = 𝑉𝑉(𝑥𝑥′) ∗  𝑖𝑖   (5) 

For mathematical calculation, we can derive 𝑉𝑉(𝑥𝑥′), as 
in Eq. (6) 

𝑉𝑉𝑚𝑚,𝑛𝑛 =  

⎣
⎢
⎢
⎡1 𝑥𝑥1
1 𝑥𝑥2

𝑥𝑥12 … 𝑥𝑥1𝑛𝑛

𝑥𝑥22 … 𝑥𝑥2𝑛𝑛
⋮ ⋮
1 𝑥𝑥𝑛𝑛

⋮ ⋱ ⋮
𝑥𝑥𝑛𝑛2 … 𝑥𝑥𝑛𝑛𝑛𝑛⎦

⎥
⎥
⎤
   (6) 

For above example, 𝑉𝑉(𝑥𝑥′) can derived as 

𝑉𝑉(𝑥𝑥′) =

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0
1 1 1

0 0 1
1 1 1

0 0 0
1 1 1

0 0 1
1 1 1

0 0 0
0 0 0

0 0 1
0 0 1⎦

⎥
⎥
⎥
⎥
⎤

 

 

𝑦𝑦 =  𝑉𝑉(𝑥𝑥′) ∗  𝑖𝑖 =  

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0
0 3 4

0 0 9
6 7 9

0 0 0
0 3 4

0 0 9
6 7 9

0 0 0
0 0 0

0 0 9
0 0 9⎦

⎥
⎥
⎥
⎥
⎤

 

While reconstructing 𝑥𝑥′ and 𝑖𝑖 from above equation is 
with inner vector and binary vector 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = y[: ,1: 5] 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =

⎣
⎢
⎢
⎢
⎢
⎡
0
3
0

0 0 0
4 6 7
0 0 0

3
0
0

4 6 7
0 0 0
0 0 0⎦

⎥
⎥
⎥
⎥
⎤

 

We want a binary vector 𝑥𝑥′𝜖𝜖 {0, 1}5 where: 

𝑥𝑥1′ =  

⎣
⎢
⎢
⎢
⎢
⎡
0
1
0
1
0
0⎦
⎥
⎥
⎥
⎥
⎤

 

The indicator function 1(.) Is  

𝑥𝑥𝑖𝑖′ =  1�∑ �𝑦𝑦𝑖𝑖𝑖𝑖�>0
5
𝑖𝑖=1 � 

The support set is 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) = { 𝑖𝑖 ∈ {0, 1, … ,𝑛𝑛 − 1} ∣∣ 𝑥𝑥𝑖𝑖  ≠ 0 } 

In vector form, 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) = 𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝑥𝑥 ≠ 0) 

The derived equation for the support vector for the 
vector length 𝑛𝑛 is as in Eq. (7) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) = { 𝑖𝑖 ∈  𝕫𝕫 ∣∣ 𝑥𝑥𝑖𝑖  ≠ 0, 0 ≤ 𝑖𝑖 < 𝑛𝑛 }       (7) 

For above example,  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) = {0, 3, 4, 6, 7, 9} 

Using zero interpolation method, indicator function 
can extend with unknown value with zero. SSS yields 
near-optimal performance as the signal characteristics 
remain consistent. Sparse data is often sufficient for 
accurate interpolation and detection. Sampling does not 
amplify noise or cause loss. Adaptive Vandermonde 
matrix calculation repetitively preserves data in its 
columns and rows. Hence, the impact of noise is very 
low. However, SSS is inherently well-suited for any 
sparse signal. It is less affected by noise because it 
focuses on capturing only the most informative portions 
of the data. This selective sampling approach reduces 
redundancy while preserving key features. As a result, 
SSS offers a robust and efficient method for signal 
acquisition and processing.  

Compressed Sensing (CS) traditionally employs 
random sampling (e.g., Gaussian or Bernoulli 
measurement matrices) to ensure incoherence between 
the sampling basis and the sparsity basis, which is 
critical for accurate signal recovery. However, for real-
world sparse signals, particularly those that are 
structured, event-driven, or physiological, irregular 
sampling often provides distinct advantages. Then, the 
sampling rate (𝑅𝑅𝑠𝑠) is defined as in Eq. (8): 

𝑅𝑅𝑠𝑠 =  
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑇𝑇𝑎𝑎𝑘𝑘𝑘𝑘𝑘𝑘

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 × 100% 

 

𝑅𝑅𝑠𝑠 =  𝑀𝑀
𝑁𝑁

 × 100%  (8) 

 
A comparison of state-of-the-art compressive sensing 

reconstruction algorithms is presented in Table 3, which 
shows dominance of Sparse Spasmodic Sampling (SSS) 
over other approaches for sparse signals. 
Table 3. Comparison of Compressive Sensing Reconstruction 

Algorithms 

Algorithm Computational 
Complexity 

Measurement 
Number 

Sampling 
Rate 

(M/N) 
OMP 𝒪𝒪(kmn) 𝒪𝒪(k log(n)) 13.3% 

CoSaMP 𝒪𝒪(mn) 𝒪𝒪(k log(n)) 16.6% 
IHT 𝒪𝒪(mn) 𝒪𝒪(k log(n/k)) 20.1% 
SSS 𝒪𝒪(m) 𝒪𝒪(k) 10% 
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The motivation for combining these algorithms lies in 
their complementary strengths. Hence, using SSS, sparse 
signal acquisition and reconstruction can be performed 
accurately.  

For experimentation purposes, data from patient record 
232 in the MIT-BIH database have been selected, along 
with the associated abnormality label.  

 
Fig 3. (a) SSS-Sampled Output, (b) Isolation Forest-Based 
Anomaly, (c) Local Outlier Factor (LOF)-Based Anomaly, 

(d) k-means Cluster-Based Anomaly 

In this example, the total number of data points (N) is 
2000, and the number of non-zero components (k), after 
normalising the data. Using the SSS sampling technique, 
sampled points are in the range of (2k+2), as shown in 
Fig. 3(a). 

The k-means clustering, isolation forest, and local 
outlier factor models were used to detect anomalies in 
the ECG signal. Using the label and predicted data, the 
calculated performance of the individual model is not 
highly accurate, as there are a smaller number of True 
positive cases and more false negative cases, as shown in 
Fig. 3 (b), (c), and (d). The same signal was tested with 
the fusion technique. Therefore, in the presence of such 
abnormal data, a novel fusion technique can detect the 
abnormality more accurately, as tabulated in Table 4. 

Table 4. Performance Comparison of Anomaly Detection 
Approaches 

Approach True 
Posi�ve 

True 
Nega�ve 

False 
Posi�ve 

False 
Nega�ve 

k-mean Clustering 87 380 0 27 

Isola�on Forest 24 378 2 90 

Local Outlier Factor 36 372 8 72 

Fusion Technique 96 372 7 18 

 

 
Fig 4. (a) Anomaly detection using individual algorithms, 

(b) Anomaly detection using fusion method. 
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Fig. 4(a) illustrates the anomaly detection capabilities of 
individual state-of-the-art algorithms, clearly 
highlighting their pros and cons. None of the algorithms 
gives highly accurate anomaly prediction. In Fig. 4(b), 
the anomaly detection using the proposed fusion-based 
algorithm is illustrated. 

3 Experimental Results 

The proposed ML-enhanced Sparse Sampling 
technique was tested on ECG signals using the MIT-BIH 
Arrhythmia database. Experiments were conducted in a 
Python environment using standard biomedical formats 
from PhysioNet. The ML-SSS model supports modular 
design and integrates well with Python-based signal 
processing tools. The Python-based simulation was 
implemented using libraries like NumPy for data 
manipulation, SciPy for signal processing, and 
Matplotlib for result visualisation. The ECG signals 
were preprocessed to normalise amplitude and remove 
noise, ensuring consistency across tests. The random 
data frame of patient record 232 is used, which has 
multiple abnormalities. All experiments were conducted 
on a standard computational setup, and results were 
averaged over multiple iterations for reliability and 
statistical significance. Fig. 5 and Fig. 6 show that the 
detected R-peak from the SSS technique is further 
classified as normal and abnormal signals for samples 1 
and 2, respectively. The abnormalities are highlighted 
with high accuracy by the fusion outlier. In both figures, 
a different set of data is used. 

 
Fig 5. Fusion Technique based Anomaly - Sample 1 

 

 
Fig 6. Fusion Technique based Anomaly– Sample 2 

 

Accuracy, precision, recall, and F1 score are essential 
performance metrics used to evaluate the effectiveness 
of models. To evaluate the performance of the proposed 
algorithm, the label data of abnormal ECG signals is 
used. Using labelled data, the detected anomalies from 
the proposed algorithm have been tested and validated. 

Accuracy measures the proportion of correctly 
predicted instances out of the total instances, as given in 
Eq. (9). It gives an overall view of model performance, 
but can be misleading when dealing with imbalanced 
datasets.  

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑇𝑇𝑇𝑇)+𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (𝑇𝑇𝑇𝑇)

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹)
 (9) 

 
Precision measures how many of the predicted positive 

instances are actual positive, as given in Eq. (10). High 
precision indicates fewer false positives, which is crucial 
in medical diagnosis applications.  

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑇𝑇𝑇𝑇)

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑇𝑇𝑇𝑇)+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝐹𝐹𝐹𝐹) (10) 
 

Recall (also known as Sensitivity or True Positive Rate 
(TPR)) measures the percentage of actual positive 
instances that were correctly predicted, as given in Eq. 
(11). High recall is essential in cases where missing 
positive instances (false negatives) are costly in 
biomedical applications. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑇𝑇𝑇𝑇)
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 (𝑇𝑇𝑇𝑇)+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (𝐹𝐹𝐹𝐹) (11) 

 
The F1 score is the harmonic mean of precision and 

recall, providing a balanced measure when there is an 
uneven class distribution, as given in Eq. (12). It is 
especially useful when precision and recall are in 
conflict, allowing for a balanced trade-off between the 
two. 

𝐹𝐹1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  2 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

   (12) 

 
The comparison of the individual model with the 

fusion technique depicts that the overall accuracy, 
precision, F1 score and Sensitivity have increased as 
given in Fig. 7 and Table 5. Among all performance 
metrics, the fusion technique outperformed the others in 
the three metrics when compared with k-means, 
Isolation Forest, and Local Outlier Factor. The precision 
is better than that of the isolation forest and local outlier 
factor. Additionally, accuracy, F1 score, and Sensitivity 
are higher than those of the other algorithms. Hence, the 
Fusion technique is a more promising technique than the 
other existing algorithms. 
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To quantify the uncertainty in our performance 
metrics, we report 95% confidence intervals (CIs) for 
accuracy, precision, recall, and F1-score. A confidence 
interval provides a range within which the actual 
population parameter (e.g., the accuracy of a model) is 
likely to lie. Specifically, a 95% confidence interval 
means that if the experiment were repeated many times 
under the same conditions, approximately 95% of those 
intervals would contain the True mean value. 

 
Fig 7. Comparison of Anomaly Detection Methods with 

Confidence Interval 95% (a) Accuracy, (b) Precision, (c) F1 
Score, (d) Recall 

The confidence intervals (CI) are calculated using Eq.  
(13). 

𝐶𝐶𝐶𝐶 =  𝑥̅𝑥 ± 𝑧𝑧 𝜎𝜎
√𝑛𝑛

    (13) 

𝐶𝐶𝐶𝐶 =  𝑥̅𝑥 ± 1.96  
𝜎𝜎
√𝑛𝑛

 

where 𝑥̅𝑥 is the sample mean, 𝜎𝜎 is the sample standard 
deviation, and 𝑛𝑛 is the number of runs (for 95% 
Confidence interval, z=1.96 and n=10 for 
experimentation count). This statistical measure helps 
assess the reliability and consistency of our model’s 
performance across different runs, as shown in Fig. 7. 

Table 5. Confusion Matrix table for different Algorithms 

Approach Accuracy  
(95% CI) 

Precision 
(95% CI) 

F1 Score 
(95% CI) 

Recall 
(95% CI) 

k-mean 
Clustering 

94.5%  
(93.7-
95.2%) 

100% 
(99.6-
100%) 

86.6% 
(85.3-
87.9%) 

76.3% 
(74.7-
77.8%) 

Isola�on Forest 
81.4% 
(80.4-
82.3%) 

92.3% 
(91.1-
93.4%) 

34.3% 
(32.6-
35.9%) 

21.1% 
(19.1-
23.1%) 

Local Outlier 
Factor 

83.6% 
(82.7-
84.4%) 

81.8% 
(80.8-
82.8%) 

47.4% 
(45.9-
48.8%) 

33.3% 
(31.5-
35.0%) 

Fusion 
Technique 

95% 
(94.4-
95.5%) 

93.2% 
(92.4-
93.9%) 

88.5% 
(87.5-
89.4%) 

84.2% 
(83.1-
85.2%) 

As shown in Fig. 8, the proposed fusion technique for 
anomaly detection achieved a high Area Under the 
Curve (AUC) score of 0.91. It indicates robust 
performance in distinguishing anomalies from normal 
data. This result demonstrates the effectiveness of the 
method in maintaining a strong balance between the 
True Positive Rate (TPR) and False Positive Rate (FPR) 
across various thresholds. The AUC reflects the model's 
ability to detect anomalies while minimising false alarms 
accurately. 

 
Fig 8. ROC Curve for Fusion technique 
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In extended experiments, the ML-SSS algorithm was 
applied to a randomly selected sparse ECG signal and 
compared with state-of-the-art methods, such as 
Compressive Sampling Matching Pursuit (CoSaMP) and 
Adaptive Reduced-Set Matching Pursuit (ARMP) [36]. 
In this experiment, we evaluated computational 
complexity, signal-to-noise ratio (SNR), compression 
factor (M/N), and reconstruction time.  

As shown in Table 4, both ML-SSS and ARMP have a 
computational complexity of 𝑂𝑂(𝑀𝑀), which is lower than 
that of CoSaMP. ML-SSS achieves the highest SNR of 
42 dB, outperforming both ARMP and CoSaMP. It also 
operates at the highest compression ratio of 10%, while 
ARMP and CoSaMP operate at 25% and 50%, 
respectively. ML-SSS delivers faster reconstruction and 
better overall performance, making it the most efficient 
method. A summary of performance metrics is provided 
in Table 6. 

Table 6. Comparison of performance metrics of different 
algorithms 

Algorithms Computa�onal 
Complexity 

SNR 
(dB) 

Compression 
(M/N) 

Reconstruc�on 
Time (s) 

CoSaMP O(MN) 35 50% 2.65 

ARMP O(M) 35 25% 0.06 

ML-SSS O(M) 42 10% 0.05 

Fig. 9 shows that the SNR for ARMP and CoSaMP 
improves as the compression rate decreases. This 
indicates that the reconstructed signal contains minimal 
noise at lower compression. In contrast, ML-SSS 
maintains a high SNR across both low and high 
compression ratios, demonstrating its robustness and 
efficiency. 

 
Fig 9. Algorithm Comparison: Compression vs. SNR 

4 Conclusion 

This research introduces a novel Sparse Spasmodic 
Sampling (SSS) framework integrated with a fusion-
based machine learning (ML) approach, referred to as 
ML-SSS. The framework combines sparse sampling 
with adaptive learning to enhance signal reconstruction 
and anomaly detection. It demonstrates clear 
improvements over existing compressive sensing 
methods. 

ML-SSS achieves accurate signal recovery with just a 
10% sampling rate, outperforming baseline techniques 
by 5–10% in both accuracy and efficiency. It also 
requires fewer measurements than traditional methods, 
such as OMP, CoSaMP, and IHT, with computational 
complexities of O(m) and O(k), respectively. 

The method achieves high performance in both 
reconstruction and anomaly detection tasks. The model 
achieves 95% accuracy, 93.3% precision, and an AUC 
of 0.91 in the experiments so far. It consistently 
maintains a high signal-to-noise ratio (SNR) of 42 dB 
across various compression levels, ensuring robust 
signal quality. With its low reconstruction time and 
reduced computational load, the method proves to be 
efficient and suitable for real-world applications. 

The results of our research demonstrate significant 
advancements in reconstruction quality, making the ML-
SSS framework highly suitable for real-world sparse 
signal processing applications. While the model was 
primarily trained and tested on ECG signals, its design is 
not inherently limited to this data type. The study lays 
the groundwork for applying the ML-SSS framework to 
a wide range of biomedical time-series signals, including 
EEG, EMG, and respiratory data. The promising results, 
however, call for further experimental validation to 
ensure the generalizability of the framework to these 
diverse signals.  

While the ML-SSS technique performs well on 
benchmark datasets, such as MIT-BIH, clinical 
implementation presents several challenges that remain 
for clinical deployment. Real-world data is often noisy 
and varies across patients. The model must be validated 
on diverse populations and environments. Resource-
limited clinical systems need optimised real-time 
processing. Regulatory compliance and data privacy 
must be ensured. 

In this research paper, we show the clinical value of 
the ML-SSS framework. However, successful adoption 
into clinical practice requires clinician trust and model 
interpretability. Ensuring model interpretability is a 
crucial aspect of our ongoing research. 

The model’s focus on ECG signals may limit its 
immediate applicability to other types of biomedical 
signals. For real-time clinical use, API development and 
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performance optimization may be required. Integration 
must also meet medical device standards and ensure 
interoperability with existing healthcare systems. The 
approach still needs testing under noisy, variable, or 
real-world conditions to confirm its robustness. Its 
computational framework is also not yet validated for 
real-time use on limited-resource devices. Real-time 
clinical deployment will need API development and 
system optimization. Integration must also meet medical 
regulations and interoperability standards. 

Future research should improve sparse signal 
reconstruction and enable real-time use on low-resource 
devices. Enhancing robustness under noisy and dynamic 
conditions is also necessary. Integrating sparse sampling 
with multimodal data fusion may improve diagnostic 
accuracy. Utilizing deep learning and explainable AI can 
enhance anomaly detection by improving precision and 
interpretability. Beyond biomedical applications, 
extending the framework to environmental, industrial, 
and financial time series is a promising prospect. 
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