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Abstract: This research explores the demands of compressive sensing (CS) and
Machine learning (ML) in biomedical signal processing. The sparse spasmodic sampling
(SSS) technique has gained significant attention in compressive sensing. The SSS
samples the signal irregularly and spasmodically. Combining machine learning (ML)
with Sparse Spasmodic Sampling (SSS) enhances accuracy and improves anomaly
detection in biomedical signals. We propose a machine learning-based novel fusion
technique that enhances sparse spasmodic sampling (ML-SSS). Mathematical analysis,
extensive simulations, and experimental results show notable improvements in
reconstruction accuracy and precision. The reconstruction using the proposed model
achieves a high signal-to-noise ratio (SNR) of up to 42 dB at a high compression factor
of 10%. The achieved accuracy is approximately 95%, and the precision is about 93.3%
when detecting abnormalities. This approach paves the way for advanced applications in
signal processing and medical imaging, where efficient data acquisition and processing
are critical. The proposed framework offers a promising direction for bridging the gap
between compressive sensing and intelligent algorithms in anomaly detection.
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1 Introduction and T segment, which represent atrial contraction,
ventricular contraction, and relaxation [1], [2]. From the
morphological features of the ECG, the detection of
various cardiac conditions, including heart blocks, is
possible, as shown in Table 1.

n the biomedical domain, Electrocardiography
(ECQ) is a crucial monitoring tool which provides
essential insights into cardiac health. In ECG signals,

there are three different stages: P wave, QRS complex,
Table 1. Morphological features in normal ECG.

Characteristics Amplitude (mV) Duration (sec)
Iranian Journal of Electrical & Electronic Engineering, 2026. P 0.25 0.11
Paper first received 10 Jan. 2025 and accepted 06 Aug. 2025.
* The author is with the Electronics Engineering Department, R L6 -
Sardar Patel Institute of Technology, Mumbai - 400058, India. Q 0.4 0.03
E-mail: umahind10@gmail.com ’ ’
** The author is with the Electronics and Telecommunication T 0.1-0.5 0.16
Engineering Department, Sardar Patel Institute of Technology,
Mumbai - 400058, India S 1.8-3
E-mails: deepak karia@spit.ac.in PP B 0.6-1.04
Corresponding Author: Deepak Karia.
*** The author is with the Applied Sciences and Humanities PR - 0.12-0.2
Department, Xavier Institute of Engineering, Mumbai -
400016, India QT - 035-44
E-mails: vijaykapure777(@gmail.com ST _ 0.05-0.15
***%%¥  The author is with the Electronics and
Telecommunication Engineering Department, Symbiosis QRS 1 0.08 - 0.1
Institute of Technology, Symbiosis International Deemed
University, Pune - 412115, India RR h 0.6-12

E-mails: sankit.kassa@sitpune.edu.in

Iranian Journal of Electrical & Electronic Engineering, Vol. 22, No. 01, March 2026 1


mailto:umahind10@gmail.com
mailto:deepak_karia@spit.ac.in
mailto:vijaykapure777@gmail.com
mailto:sankit.kassa@sitpune.edu.in

Heart block is a cardiac conduction disorder classified
into three types: first-degree, second-degree, and third-
degree [3], [4], [5]. ECG analysis of these blocks
facilitates the early detection of conditions such as heart
failure or cardiac arrest.

In the first-degree block, the PR interval exceeds 0.2
seconds, but conduction to the ventricles remains intact.
It is often benign and requires no treatment. The second-
degree block involves intermittent failure of ventricular
conduction, seen as dropped QRS complexes. It
includes: Mobitz I (Wenckebach): Gradual PR
prolongation followed by a missed QRS. Mobitz II:
Constant PR intervals with sudden QRS drops. 2:1 or 3:1
conduction: One or two missed QRS complexes after
regular cycles. The third-degree block shows complete
AV dissociation. P waves and QRS complexes occur
independently, with a slow but regular rhythm
maintained by a junctional or ventricular pacemaker [2].

In all types, R-R interval patterns reflect disrupted
atrioventricular conduction: regular but prolonged in
first-degree, irregular in second-degree, and regular but
slow in third-degree blocks.

Recent advances in signal processing and computing
have improved ECG analysis. Detecting heart block is
now more accurate. New methods enable the detection
of more precise abnormality detection [1]. Recent
studies have focused on utilising advanced techniques,
such as compressive sensing (CS) and machine learning
(ML), to enhance ECG acquisition, noise reduction,
feature extraction, and interpretation. CS is particularly
useful in addressing limitations in resource-constrained
settings and strengthening overall performance [6].

Nowadays, researchers are focusing on applying
compressed sensing techniques to biomedical signals.
Compressive Sensing (CS) has evolved as a crucial
signal-processing technique [6], [7], [8], [9], [10], [11].
The CS enables the acquisition and reconstruction of
sparse signals using fewer samples than the traditional
Nyquist-Shannon sampling theorem.

Compressed sensing (CS) exploits the sparsity of
signals in certain transformed domains. At the receiver
end, CS uses mathematical models to reconstruct the
original signal [12], [13], [14], [15], [16]. This
framework is widely applied in biomedical signal
acquisition, reconstruction, feature extraction, and
classification. CS helps overcome significant challenges
by enabling faster signal acquisition, higher accuracy,
and better energy efficiency [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26].

Recent advances in compressive sensing (CS) use
machine learning (ML) to boost signal reconstruction,
robustness, and efficiency. @ ML-based sparse
representation learning also improves resistance to noise

and outliers. However, challenges in generalization and
computational efficiency remain, necessitating hybrid
approaches for broader applicability [27], [28], [29],
[30], [31]. This paper focuses on the use of machine
learning (ML) enhanced sparse spasmodic sampling
(SSS). The SSS samples the sparse signal irregularly.

Additionally, ML has excellent potential in handling
sparse, noisy, and irregular data. These models are
capable of learning basic patterns from the data and help
identify abnormalities. The ML-based SSS can
overcome the traditional signal reconstruction methods.

The remainder of the paper is organized as follows.
Section 2 proposed a novel ML-enhanced Sparse
Spasmodic sampling technique. Section 3 has the
experimental results of the proposed algorithm on ECG
signal. The paper concluded in section 4.

2 ML-enhanced sparse spasmodic sampling (ML-SSS)

Compressive Sensing (CS) is a signal processing
technique that enables the acquisition and reconstruction
of sparse signals using compressed samples [21], [22],
[23], [24]. Sparse Spasmodic Sampling (SSS) is a
compressive sensing-based technique used in signal
processing. It samples the signal intermittently using
sparsity criteria, which lowers the number of samples
needed for accurate reconstruction. This method is
particularly beneficial in applications such as wireless
sensor networks and medical devices.

Sparse Spasmodic Sampling (SSS) focuses on
irregularly spaced sampling intervals. This unique
strategy differentiates it from non-uniform sampling and
random sampling techniques. It samples the data
intelligently whenever a zero-to-non-zero component
occurs or vice versa. Hence, the SSS technique does not
miss the non-zero elements in the sparse signal, which is
not possible in non-uniform or random sampling
techniques [23], [24]. It concentrates on capturing
significant signal features at selected time points. The
SSS has shown promise in various domains, including
biomedical, communications and sensor networks. The
main advantage of SSS is its ability to reconstruct
signals with minimal data, reducing storage and
transmission costs. It is especially effective when the
signal is sparse, with most of the information
concentrated in a few components. The detailed steps of
the algorithm are outlined below in Algorithm 1.

The flowchart in Fig. 1 illustrates the sparse spasmodic
sampling process. The process begins with the
initialisation of input data, followed by normalisation
and quantisation. Further, it checks for availability for
further processing. The level detection compares
previously stored data with current data. Based on this
comparison, it stores the samples irregularly. The
process continues until it meets a specific stopping
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condition, at which point it terminates. This structured
approach enables data to be processed iteratively.

Table 2. Comparison of Traditional Anomaly detection ML

Algorithm 1: Sparse Spasmodic Sampling (SSS)

Input:
- x: input data sample

Output:
- y: measurement vector

Steps:
1. Store the starting point and its index position

2. Check the next value which differs from the
first value (if the starting point is 0, then store

the next value if it is ‘1’ and vice versa)

3. If the next value is stored, then store its index
position.

4. Continues until transitions occur from 0 to 1
and 1 to 0; otherwise, skip points.

5. Store all the sampled points till the last value
occurred.

6. Store the last value as sampled points

7. Returny

In various fields, such as healthcare, anomaly detection
is a crucial task. To identify anomalies, it is essential to
identify irregular patterns in data. Researchers have
proposed various anomaly detection algorithms,
including DBSCAN [28], hierarchical clustering [29], K-
means and SVD [4], Isolation Forest [32], and Local
Outlier Factor [33], [34], [35], [36], [37].

Clustering-based methods, such as K-Means, are
effective for grouping data into regular patterns.
However, it may be difficult for them to detect high-
dimensional outliers. The Isolation Forest (IF) identifies
anomalies by measuring the separation between data
points. The Isolation Forest (IF) is a tree-based model
that identifies global anomalies but struggles to capture
local variations in the data. Density-based techniques,
such as Local Outlier Factor (LOF), are susceptible to
parameter tuning; hence, large datasets may result in
inefficient scaling. The comparison of traditional
Anomaly detection ML algorithms is given in Table 2.

Where, n is number of data points, £ is number of
clusters, d is dimensionality, 7 is number of iterations, ¢
is number of trees, y is subsample size (typically y<<n)
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Fig 1. Flow chart of Sparse Spasmodic Sampling

This paper proposes a novel fusion-based approach
that combines K-Means, Isolation Forest (IF), and Local
Outlier Factor (LOF). This fusion technique helps to
detect anomalies. The fusion technique addresses all the
limitations of the individual algorithms. Machine
learning can effectively handle sparse, noisy, and
irregular data. Learning underlying patterns can improve
sparse signal reconstruction. The detailed steps of the
algorithm are outlined in Algorithm 2 below. The
flowchart in Fig. 2 outlines the steps for detecting
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anomalies in ECG signals using a fusion-based
algorithm. It begins with sampled data from the SSS
technique. It calculates the R-R interval and labels it as
normal or abnormal. Then, a fusion-based algorithm is
applied to detect anomalies from R-R intervals.
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Fig 2. Flow chart of Fusion-based anomaly detection

Algorithm 2: Fusion-based anomaly detection
algorithm (ML- SSS)

Input:
- y: measurement vector

Output:
- x: input data sample
- Abnormalities

Steps:

1. Initialise with measurement vector

2. Calculate RR interval at each occurrence

3. Label RR interval as normal or abnormal
interval

4. The fusion technique detects abnormal RR
intervals from the SSS output.

5. Returns x with abnormalities

An ECG signal x € RV is sparse in its time domain,
has only k « N where k is the number of non-zero
coefficients and N is the total measurements, as in Eq.

(.
x[n]...n=1,2,3...N )
Using the SSS technique, compressed samples were
achieved as in Eq. (2)
Xss5(1) : where i € non —uniform 2)
and sparse indices

The sparse signal x have k non-zero elements. Then,
the signal can be equivalently represented as a pair of
vectors, as in Eq. (3):

xX; = {x’,
, =
O’

Compressed Samples (x') as
x' = [0, Xi1, O; Xi3, 0, ]

compressed samples
otherwise

€)

Support set (index position of sampled values)
i = [io» il’ iz; i3. i4, i5, ]

The sensing process is incoherent in CS. The
measurement vector y sparsely represents the x using the
sensing metric ¢ [22], as in Eq. (4).

y=¢x “

The SSS detects the R-peaks from the ECG signal
which further process with the Vandermonde sensing
matrix [24]. The sparse signal can be reconstructed by

placing the values from x at the positions specified in i,
and setting all other positions to zero.

For example, if sparse signal x;

xi = [Ol 0; 0; 11 0) 0' 1‘ 0’ 0’ 0]

o = {1, if row iin Yipner has non — zero element
170, otherwise

x1 = [any Vinner i, :] # 0]?:1

Vectorized as
5
X = (Zlyul > 0) V€ {0, ..., 5}
i=1

x'=10,1,0,1,0,0]
Support set (i) is

i=1[0,3,4,6,7,9]
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In the Compressive sensing-based novel Sparse
Spasmodic Sampling (SSS) reconstruction approach, the
reconstruction of the ECG signal is accurately possible
due to the Vandermonde sensing matrix. The
measurement vector y can be reconstructed by
multiplying the index locations of non-zero components
with the Vandermonde matrix of compressed sampled
components (x') from x, as in Eq. (5).

y=V&) i )

For mathematical calculation, we can derive V(x'), as
in Eq. (6)

[1 x; xt .. x}

_ X x2 .. xP
Vo= |1 72 %3 - (©)

2 n

1 x, x; Xn

For above example, V (x") can derived as
0 0 0 0 0 1

111111
~ 1o o0 o0 01
Ve =1y 1 111 1

000001J
00000 1
00000 9
03 46 7 9
. . looo0oo0o0 9
y=V@«i=1g 3 4 5 7 9
00000 9
00000 9

While reconstructing x’ and i from above equation is
with inner vector and binary vector

Yinner = y[:,1: 5]

0 0 0 O
3 4 6 7
_]10 0 0 0
YVinner = 3 4 6 7
0 0 0 O
0 0 0 O
We want a binary vector x’e {0, 1} where:
0
1
Xy = (1)
0
0

The indicator function 1, Is

= i ylo0)
The support set is
supp(x) ={i €{0,1,...,.n—1} | x; #0}

In vector form,
supp(x) = indices (x # 0)

The derived equation for the support vector for the
vector length n is as in Eq. (7)

supp(x)={i €z |x;, #0, 0<i<n} (7)
For above example,
supp(x) = {0,3,4,6,7,9}

Using zero interpolation method, indicator function
can extend with unknown value with zero. SSS yields
near-optimal performance as the signal characteristics
remain consistent. Sparse data is often sufficient for
accurate interpolation and detection. Sampling does not
amplify noise or cause loss. Adaptive Vandermonde
matrix calculation repetitively preserves data in its
columns and rows. Hence, the impact of noise is very
low. However, SSS is inherently well-suited for any
sparse signal. It is less affected by noise because it
focuses on capturing only the most informative portions
of the data. This selective sampling approach reduces
redundancy while preserving key features. As a result,
SSS offers a robust and efficient method for signal
acquisition and processing.

Compressed Sensing (CS) traditionally employs
random sampling (e.g., Gaussian or Bernoulli
measurement matrices) to ensure incoherence between
the sampling basis and the sparsity basis, which is
critical for accurate signal recovery. However, for real-
world sparse signals, particularly those that are
structured, event-driven, or physiological, irregular
sampling often provides distinct advantages. Then, the
sampling rate (R;) is defined as in Eq. (8):

Number of Samples Taken
x 100%

S

~ Total length of original signal

Ry = = X 100% ®)

A comparison of state-of-the-art compressive sensing
reconstruction algorithms is presented in Table 3, which
shows dominance of Sparse Spasmodic Sampling (SSS)
over other approaches for sparse signals.

Table 3. Comparison of Compressive Sensing Reconstruction

Algorithms

Algorithm  Computational Measurement Sampling
Complexity Number Rate
(M/N)
OMP O (kmn) O(klog(n)) 13.3%
CoSaMP O(mn) 0(klog(n)) 16.6%
HT O(mn) 0(klog(n/k)) 20.1%
SSS O(m) 0k 10%
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The motivation for combining these algorithms lies in
their complementary strengths. Hence, using SSS, sparse
signal acquisition and reconstruction can be performed
accurately.

For experimentation purposes, data from patient record
232 in the MIT-BIH database have been selected, along
with the associated abnormality label.
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Fig 3. (a) SSS-Sampled Output, (b) Isolation Forest-Based
Anomaly, (c) Local Outlier Factor (LOF)-Based Anomaly,
(d) k-means Cluster-Based Anomaly

In this example, the total number of data points (V) is
2000, and the number of non-zero components (k), after
normalising the data. Using the SSS sampling technique,
sampled points are in the range of (2k+2), as shown in
Fig. 3(a).

The k-means clustering, isolation forest, and local
outlier factor models were used to detect anomalies in
the ECG signal. Using the label and predicted data, the
calculated performance of the individual model is not
highly accurate, as there are a smaller number of True
positive cases and more false negative cases, as shown in
Fig. 3 (b), (¢), and (d). The same signal was tested with
the fusion technique. Therefore, in the presence of such
abnormal data, a novel fusion technique can detect the
abnormality more accurately, as tabulated in Table 4.

Table 4. Performance Comparison of Anomaly Detection

Approaches
True True False False
Approach . . . .
Positive Negative Positive  Negative
k-mean Clustering 87 380 0 27
Isolation Forest 24 378 2 90
Local Outlier Factor 36 372 8 72
Fusion Technique 96 372 7 18
(a) Anomaly detection using individual algorithms
0.4
S
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[
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(b) Anomaly detection using fusion method
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Fig 4. (a) Anomaly detection using individual algorithms,
(b) Anomaly detection using fusion method.
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Fig. 4(a) illustrates the anomaly detection capabilities of
individual state-of-the-art algorithms, clearly
highlighting their pros and cons. None of the algorithms
gives highly accurate anomaly prediction. In Fig. 4(b),
the anomaly detection using the proposed fusion-based
algorithm is illustrated.

3 Experimental Results

The proposed ML-enhanced Sparse Sampling
technique was tested on ECG signals using the MIT-BIH
Arrhythmia database. Experiments were conducted in a
Python environment using standard biomedical formats
from PhysioNet. The ML-SSS model supports modular
design and integrates well with Python-based signal
processing tools. The Python-based simulation was
implemented using libraries like NumPy for data
manipulation, SciPy for signal processing, and
Matplotlib for result visualisation. The ECG signals
were preprocessed to normalise amplitude and remove
noise, ensuring consistency across tests. The random
data frame of patient record 232 is used, which has
multiple abnormalities. All experiments were conducted
on a standard computational setup, and results were
averaged over multiple iterations for reliability and
statistical significance. Fig. 5 and Fig. 6 show that the
detected R-peak from the SSS technique is further
classified as normal and abnormal signals for samples 1
and 2, respectively. The abnormalities are highlighted
with high accuracy by the fusion outlier. In both figures,
a different set of data is used.
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Fig 6. Fusion Technique based Anomaly— Sample 2

Accuracy, precision, recall, and F1 score are essential
performance metrics used to evaluate the effectiveness
of models. To evaluate the performance of the proposed
algorithm, the label data of abnormal ECG signals is
used. Using labelled data, the detected anomalies from
the proposed algorithm have been tested and validated.

Accuracy measures the proportion of correctly
predicted instances out of the total instances, as given in
Eq. (9). It gives an overall view of model performance,
but can be misleading when dealing with imbalanced
datasets.

True Positive (TP)+True Negative (TN)
Total Instances (TP+TN+FP+FN)

Accuracy = )

Precision measures how many of the predicted positive
instances are actual positive, as given in Eq. (10). High
precision indicates fewer false positives, which is crucial
in medical diagnosis applications.

True Positive (TP)
True Positive (TP)+False Positive (FP)

Precision = (10)

Recall (also known as Sensitivity or True Positive Rate
(TPR)) measures the percentage of actual positive
instances that were correctly predicted, as given in Eq.
(11). High recall is essential in cases where missing
positive instances (false negatives) are costly in
biomedical applications.

True Positive (TP)

Recall = — -
True Positive (TP)+False Negative (FN)

(11)

The F1 score is the harmonic mean of precision and
recall, providing a balanced measure when there is an
uneven class distribution, as given in Eq. (12). It is
especially useful when precision and recall are in
conflict, allowing for a balanced trade-off between the
two.

Precision.Sensitivity

Flscore = 2% ————
Precision+Sensitivity

(12)

The comparison of the individual model with the
fusion technique depicts that the overall accuracy,
precision, F1 score and Sensitivity have increased as
given in Fig. 7 and Table 5. Among all performance
metrics, the fusion technique outperformed the others in
the three metrics when compared with k-means,
Isolation Forest, and Local Outlier Factor. The precision
is better than that of the isolation forest and local outlier
factor. Additionally, accuracy, F1 score, and Sensitivity
are higher than those of the other algorithms. Hence, the
Fusion technique is a more promising technique than the
other existing algorithms.
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To quantify the uncertainty in our performance
metrics, we report 95% confidence intervals (Cls) for
accuracy, precision, recall, and Fl-score. A confidence
interval provides a range within which the actual
population parameter (e.g., the accuracy of a model) is
likely to lie. Specifically, a 95% confidence interval
means that if the experiment were repeated many times
under the same conditions, approximately 95% of those
intervals would contain the True mean value.

Local Outlier Factor
Fusion Technique

K-Mean Clustering
Isolation Forest

(a) Accuracy with 95% Confidence Interval
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Fig 7. Comparison of Anomaly Detection Methods with
Confidence Interval 95% (a) Accuracy, (b) Precision, (c) F1
Score, (d) Recall

The confidence intervals (CI) are calculated using Eq.

(13).

g
= (13)
9

where X is the sample mean, o is the sample standard
deviation, and n is the number of runs (for 95%
Confidence interval, 2z=196 and n=10 for
experimentation count). This statistical measure helps
assess the reliability and consistency of our model’s
performance across different runs, as shown in Fig. 7.

Table 5. Confusion Matrix table for different Algorithms

Accuracy Precision F1 Score Recall

Approach gcoicl)  (95%Cl)  (95%Cl)  (95% Cl)
. 94.5% 100%  86.6%  76.3%
: (93.7- (99.6- (853~  (74.7-
Clustering

95.2%) 100%)  87.9%)  77.8%)

81.4% 92.3% 34.3% 21.1%
Isolation Forest ~ (80.4- (91.1- (32.6- (19.1-
82.3%) 93.4%) 35.9%) 23.1%)

83.6% 81.8% 47.4% 33.3%

Local Outli
°c§actgr'er (82.7- (80.8- = (459- (315
84.4%) 82.8%) 48.8%) 35.0%)
. 95% 93.2% 88.5% 84.2%
Fusion
) (94.4- (92.4- (87.5- (83.1-
Technique

95.5%)  93.9%)  89.4%)  85.2%)

As shown in Fig. 8, the proposed fusion technique for
anomaly detection achieved a high Area Under the
Curve (AUC) score of 0.91. It indicates robust
performance in distinguishing anomalies from normal
data. This result demonstrates the effectiveness of the
method in maintaining a strong balance between the
True Positive Rate (TPR) and False Positive Rate (FPR)
across various thresholds. The AUC reflects the model's
ability to detect anomalies while minimising false alarms
accurately.
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Fig 8. ROC Curve for Fusion technique
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In extended experiments, the ML-SSS algorithm was
applied to a randomly selected sparse ECG signal and
compared with state-of-the-art methods, such as
Compressive Sampling Matching Pursuit (CoSaMP) and
Adaptive Reduced-Set Matching Pursuit (ARMP) [36].
In this experiment, we evaluated computational
complexity, signal-to-noise ratio (SNR), compression
factor (M/N), and reconstruction time.

As shown in Table 4, both ML-SSS and ARMP have a
computational complexity of O(M), which is lower than
that of CoSaMP. ML-SSS achieves the highest SNR of
42 dB, outperforming both ARMP and CoSaMP. It also
operates at the highest compression ratio of 10%, while
ARMP and CoSaMP operate at 25% and 50%,
respectively. ML-SSS delivers faster reconstruction and
better overall performance, making it the most efficient
method. A summary of performance metrics is provided
in Table 6.

Table 6. Comparison of performance metrics of different

algorithms
Algorithms ComputaﬁF)naI SNR Compression Reco.nstruction
Complexity  (dB) (M/N) Time (s)
CoSaMP O(MN) 35 50% 2.65
ARMP Oo(M) 35 25% 0.06
ML-SSS Oo(M) 42 10% 0.05

Fig. 9 shows that the SNR for ARMP and CoSaMP
improves as the compression rate decreases. This
indicates that the reconstructed signal contains minimal
noise at lower compression. In contrast, ML-SSS
maintains a high SNR across both low and high
compression ratios, demonstrating its robustness and
efficiency.

Compression vs SNR
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Fig 9. Algorithm Comparison: Compression vs. SNR

4 Conclusion

This research introduces a novel Sparse Spasmodic
Sampling (SSS) framework integrated with a fusion-
based machine learning (ML) approach, referred to as
ML-SSS. The framework combines sparse sampling
with adaptive learning to enhance signal reconstruction
and anomaly detection. It demonstrates clear
improvements over existing compressive sensing
methods.

ML-SSS achieves accurate signal recovery with just a
10% sampling rate, outperforming baseline techniques
by 5-10% in both accuracy and efficiency. It also
requires fewer measurements than traditional methods,
such as OMP, CoSaMP, and IHT, with computational
complexities of O(m) and O(k), respectively.

The method achieves high performance in both
reconstruction and anomaly detection tasks. The model
achieves 95% accuracy, 93.3% precision, and an AUC
of 091 in the experiments so far. It consistently
maintains a high signal-to-noise ratio (SNR) of 42 dB
across various compression levels, ensuring robust
signal quality. With its low reconstruction time and
reduced computational load, the method proves to be
efficient and suitable for real-world applications.

The results of our research demonstrate significant
advancements in reconstruction quality, making the ML-
SSS framework highly suitable for real-world sparse
signal processing applications. While the model was
primarily trained and tested on ECG signals, its design is
not inherently limited to this data type. The study lays
the groundwork for applying the ML-SSS framework to
a wide range of biomedical time-series signals, including
EEG, EMG, and respiratory data. The promising results,
however, call for further experimental validation to
ensure the generalizability of the framework to these
diverse signals.

While the ML-SSS technique performs well on
benchmark datasets, such as MIT-BIH, clinical
implementation presents several challenges that remain
for clinical deployment. Real-world data is often noisy
and varies across patients. The model must be validated
on diverse populations and environments. Resource-
limited clinical systems need optimised real-time
processing. Regulatory compliance and data privacy
must be ensured.

In this research paper, we show the clinical value of
the ML-SSS framework. However, successful adoption
into clinical practice requires clinician trust and model
interpretability. Ensuring model interpretability is a
crucial aspect of our ongoing research.

The model’s focus on ECG signals may limit its
immediate applicability to other types of biomedical
signals. For real-time clinical use, API development and
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performance optimization may be required. Integration
must also meet medical device standards and ensure
interoperability with existing healthcare systems. The
approach still needs testing under noisy, variable, or
real-world conditions to confirm its robustness. Its
computational framework is also not yet validated for
real-time use on limited-resource devices. Real-time
clinical deployment will need API development and
system optimization. Integration must also meet medical
regulations and interoperability standards.

Future research should improve sparse signal
reconstruction and enable real-time use on low-resource
devices. Enhancing robustness under noisy and dynamic
conditions is also necessary. Integrating sparse sampling
with multimodal data fusion may improve diagnostic
accuracy. Utilizing deep learning and explainable Al can
enhance anomaly detection by improving precision and
interpretability. Beyond biomedical applications,
extending the framework to environmental, industrial,
and financial time series is a promising prospect.
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