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A generalized ABFT technique using a fault tolerant 
neural network 
 
A. Moosavienia and K. Mohammadi 
 

Abstract: In this paper we first show that standard BP algorithm cannot yeild to a uniform 
information distribution over the neural network architecture. A measure of sensitivity is 
defined to evaluate fault tolerance of neural network and then we show that the sensitivity 
of a link is closely related to the amount of information passes through it. Based on this 
assumption, we prove that the distribution of output error caused by s-a-0 (stuck at 0) faults 
in a MLP network has a Gaussian distribution function. UDBP (Uniformly Distributed 
Back Propagation) algorithm is then introduced to minimize mean and variance of the 
output error. Simulation results show that UDBP has the least sensitivity and the highest 
fault tolerance among other algorithms such as WRTA, N-FTBP and ADP. Then a MLP 
neural network trained with UDBP, contributes in an Algorithm Based Fault Tolerant 
(ABFT) scheme to protect a nonlinear data process block. The neural network is trained to 
produce an all zero syndrome sequence in the absence of any faults. A systematic real 
convolution code guarantees that faults representing errors in the processed data will result 
in notable nonzero values in syndrome sequence. A majority logic decoder can easily detect 
and correct single faults by observing the syndrome sequence. Simulation results 
demonstrating the error detection and correction behavior against random s-a-0 faults are 
presented too. 
 
Keywords: fault tolerance, back propagation, MLP network, function approximation, 
ABFT, convolutional codes, majority logic decoding. 

 
 
1 Introduction1 

One of the most attractive features of neural 
networks is their capability to model nonlinear systems 
in addition to their intrinsic fault tolerant ability. In fact 
neural networks have been successfully used for fault 
diagnosis in nonlinear systems [1], [2], [3]. However 
recent researches [4], [5], [31], show that these 
networks are not really fault tolerant. Indeed, there are 
always many nodes in a large neural network that do not 
contribute in neural network function, so in contrast to 
using redundant nodes, fault tolerance is not improved. 
On the other side, we can often find nodes that are too 
important and their failure can cause a system crash. 
On the other hand, using conventional fault tolerant 
techniques, such as Triple Modular Redundancy (TMR) 
and Triple Time Redundancy (TTR) [6], yields to either 
a very expensive and large system or a long time 
overhead. Algorithm based fault tolerant techniques are 
good choices for error detection and correction in linear 
systems, using cheap and small variations in hardware 
or software [7]. 
In this paper we will first introduce a fault tolerant 
neural network architecture, based on MLP (Multilayer 
Perceptron) and a new learning algorithm, based on 
conventional error Back Propagation (BP) algorithm. 
Then we utilize this neural network in an ABFT 
architecture using convolutional codes to correct single 
faults in a nonlinear system. 
Two main approaches have been proposed to improve 
fault tolerance in an artificial neural network: 1) 
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modified learning algorithms and 2) modified 
architectures. Most of the reported papers deal with 
learning phase or algorithm. In fact, it is believed that 
distributed architecture of neural networks is not 
suitably utilized by current common learning algorithms 
such as BP, in order to have or enhance fault tolerance 
in neural networks. In [8] this enhancement is achieved 
by manipulating the gradient of sigmoid function during 
learning phase. [9] and [10] have used the well known 
method of fault injection during learning procedure and 
shown that fault behavior of neural network can be 
greatly improved against stuck-at-0 and stuck-at-1 
faults. [11] have introduced a network called 
“Maximally Fault Tolerant neural Network”, which its 
weight coefficients are estimated through a nonlinear 
optimization problem to get the maximum allowable 
fault tolerance in the neural network. There are few 
reports considering the neural network architecture to 
improve fault tolerance. [12] studied feedback neural 
networks with hard limiting outputs. The results show 
that fault tolerant of such networks can not be improved 
through adding more nodes. [13] addressed some 
modification on architecture such as addition/deletion 
nodes but it is still based on learning procedure. In [14] 
a method is presented to break critical nodes in a trained 
MLP to have a predefined level of fault tolerance. In [4] 
a two layer feed forward neural network is modified to 
detect faulty links based on the assumption that the 
weights of all links are known and stored in a memory. 
The following section of this paper introduces briefly 
the ABFT concepts. Section 3 describes the convolution 
code used in this paper. Then in section 4 a Multilayer 
Perceptron network with conventional BP algorithm in 
presented. In section 5 we introduce fault model and 
sources in a neural network. Section 6 and 7 contain our 
modified architecture and learning algorithm 
respectively. Simulation details and results are provided 
in section 8 and finally section 9 concludes the main 
advantages of the proposed method. 
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2 ABFT scheme 
ABFT has been suggested to design fault tolerant array 
processors and systolic array systems. The scheme is 
capable to detect and sometimes correct errors caused 
by permanent or transient failures in the system. It was 
first proposed as a checksum approach for matrix 
operations [15], [16]. Since then, the technique has been 
extended to many digital signal processing applications 
such as Fast Fourier Transform [17], [18], solving linear 
and partial differential equations [19],[23], digital filters 
[20] and to protect linear [21] and general 
multiprocessor systems[22]. 
Fig.1 shows the basic architecture of an ABFT system. 
Existing techniques use various coding schemes to 
provide information redundancy needed for error 
detection and correction. As a result this 
encoding/decoding must be considered as the overhead 
introduced by ABFT. 
 
 
 
 
 
 
 
 
 
Fig. 1 General architecture of ABFT 
 
The coding algorithm is closely related to the running 
process and is often defined by real number codes 
generally of the block types [24]. Systematic codes are 
of most interest because the fault detection scheme can 
be superimposed on the original process box with the 
least changes in the algorithm and architecture. 
In most previous ABFT applications, the process to be 
protected is often a linear system. In this paper we 
assume a more common case consisting linear or 
nonlinear systems but still constrain ourselves to static 
systems. This assumption is due to selecting a static 
neural network in the main architecture. 
 
2.1 Convolutional codes 

A convolutional encoder, processes data stream 
sequentially and for every k information symbols 
presented to it, there are n (n>k) output symbols. Hence, 
n-k parity codes are generated. The coding scheme 
depends on the history of a certain number of input 
symbols. The total register length used in decoder is 
called constraint length. This code has been used as a 
suitable mechanism in data communication for many 
years [25]. Although they are basically designed to 
protect data streams on finite fields, but researches on 
infinite fields is also reported [26]. We consider only 
systematic forms of convolutional codes because the 
normal operation of Process block is not altered and 
there is no need to decoding for obtaining true outputs. 
In addition systematic convolutional codes are proved to 
be noncatastrophic. 
The generator matrix of a systematic convolutional 
code, G, is a semifinite matrix evolving m finite 
submatrixes as: 

 

(1) 

where I and 0 are identity and all zero k×k  matrixes 
respectively [32] and Pi  with i= 0 to m is a k×(n-k) 
matrix whose entries are : 

 

(2) 

Unfilled areas in the G indicate zero values. The parity 
check matrix associated to this code is given by: 

 

(3) 

I and 0 are identity and all zero (n-k)×(n-k) matrixes 
respectively. The syndrome equations, denoted by 
vector S, are given by: 

S=rHT=eHT (4) 

Where r is the received sequence and e is error pattern. 
When r is a code word S is zero else it have some non-
zero values. 
There are three principal ways of decoding 
convolutional codes, Viterbi decoding, sequential 
decoding and majority-logic decoding [24]. Viterbi 
algorithm is an optimal decoding procedure based on 
Maximum Likelihood approach but it requires 2k 
computations per decoded information bits. On the other 
hand it has a decoding delay equal to the information 
frame length, so it consumes a large amount of memory 
and computation time. Sequential decoding is a near 
optimal scheme with an average of 1 or 2 computations 
per information bit but still has a delay as long as input 
data stream. A majority-logic decoder on the other hand 
has the least performance but it needs one constraint 
length of code and just one computation per bit for 
decoding. So it minimizes memory usage and has the 
highest decoding speed. This paper therefore uses the 
majority-logic decoding for its convolutional code. 
 
2.2 Self Orthogonal Codes 

Majority logic decoding is based on the orthogonal 
parity-check sums, i.e. the equations relating any 
syndrome bit or any sum of them to channel error bits. 
By definition a set of J such summations are orthogonal 
on an error bit ej if each sum contains ej but no other 
error bit is in more than one check sum equation. 
Majority-logic decoding rule says that the estimated 
error bit, êj, is 1 if more than tML=J/2 of J orthogonal 
check sums have value 1. tML is called the majority-logic 
correcting capability of the code [24]. 
To employ the maximum error correcting capability of 
the code, it must be completely orthogonalizable [24], 
that is a code in which J=dmin-1. By definition dmin is: 

dmin=min{w[v]m : u0 ≠ 0 } (5) 

Where v is a code word and u0 is the first nonzero input 
information sequence. Note that dmin is calculated over 
the first constraint length of the code. 
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Self-orthogonal codes are one class of codes that are 
completely orthogonalizable. In such a code, for each 
information error bit the set of all syndrome bits that 
involve that bit, form an orthogonal check set on that bit 
without the need for adding syndrome bits. Using these 
codes make an easier implementation of majority-logic 
decoding. 
 
3 Data distribution in a MLP network 

MLP network consists of several cascaded layers of 
neurons with sigmoid activation functions [27]. The 
input vector, feeds into each of the first layer neurons, 
the outputs of this layer feed into each of the second 
layer neurons and so on, as shown in Fig. 2.  

The layers between input and output are called 
hidden layers. In this paper feed forward I-H-O neural 
networks are considered. Which H, O and I denote 
nodes in input layer, hidden layer and output layer 
respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Architecture of a typical MLP network. 
 
To evaluate the fault tolerance of a MLP network we 
present two definitions as the following: 
 
Definition 1: s(wi) is defined as the sensitivity of neural 
network to weight wi that is the effect on mean square 
error (MSE) when wi is forced to zero. 
Sensitivity can be measured by:  

)W(E)W(E)w(s i −′=  (6) 

In which W=(w1,...,wk) denotes the vector of all 
weights of the neural network and W’ is the new vector 
in which wi is stuck at zero. E(W) is the MSE for weight 
vector W, over all training set. 
 
Definition 2: The Iij, the information package (IP) of 
link wij, is defined as:  

ijiij wohI ×=  (7) 

Where ohi is the output of hidden neuron i and wij is 
the connecting weight between hidden neuron i and 
output neuron j. 

Most often the nodes are fully connected, i.e., every 
node in layer l is connected to every node in layer l+1. 
In this paper we assume input vector as the first layer in 
the neural network. MLP networks can easily perform 
Boolean logic operations, pattern recognition, 
classification and nonlinear function approximation 
[28]. Usually output neurons use linear activation 
functions rather than nonlinear sigmoid, since this tends 
to make learning easier. MLP is a supervised neural 
network that learns through examples and BP is the 
most common used learning algorithm that is a steepest 
descent gradient-based algorithm. In this paper we 
assume that the activation function of each neuron is a 

bipolar sigmoid by the following equation: 

)sexp(1
)sexp(1

)s(f
i

i
i −+

−−
=  (8) 

∑ θ−×=
j

iiiji xws  (9) 

xj  is neuron j’s output and θi is a bias value for the 
neuron i. Standard BP algorithm changes wij in order to 
reduce the output error, E, defined by: 

∑ −=
i

2
ii )ot(

2
1E  (10) 

Where tj is j’th output target and oj  is the j’th 
estimated output [29].  

Using the steepest descent gradient rule, the change 
of wij is expressed as: 

ij
ij w

Ew
∂
∂

η−=∆  (11) 

η is a positive number called “learning rate” which 
determines step size in wij changes. Selecting a suitable 
η value plays an important role in network learning 
convergence [30]. 

Back propagation algorithm says that: 
P
j

P
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Where equation (13) is for an output layer and 
equation (14) is for neurons in hidden layer. ′f () is the 
derivative of the sigmoid and is calculated by: 

))x(f1)(x(f2)x(f −=′  (15) 

To evaluate the fault tolerant behavior of a MLP 
trained with standard BP we will continue by an 
example. 

Example 1: A 3-4-1 neural network as in Fig. 3 is 
trained to approximate a non-linear function defined in 
equation (16). 

zyx
1o

++
=  (16) 

The training set is TL={0.1, 0.2,..., 1.1}. BP is 
iterated for 30000 epochs with a learning rate of 0.05. 
The trained network is then subjected to four stuck-at-0 
faults according to each node of hidden layer. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 The 3-4-1 MLP network used in Example 1. 
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Table 1 shows the sensitivity measures for 10000 input 
vectors selected randomly from the test set TT={0.10, 
0.11,..., 1.11}. 
 
Table 1 Weight sensitivity for MLP trained by standard BP 
algorithm 

Weight in 
1’st layer sensitivity Weight in 

2’nd layer sensitivity 

w11 

w12 

w13 

w14 

0.0758 
0.0050 
0.0006 
0.0012 

v1 

v2 

v3 

v4 

1.8808 
0.0916 
0.0581 
0.5503 

 
In this example v1 -v4 are the weights in output layer 

and w11-w14 are the weights from input node 1 to all 
nodes in hidden layer. Clearly the network is not too 
sensitive to the weights in first layer. However, in the 
output layer there is a large sensitivity to weight v1.  

It is worth to look at histogram of IPs corresponding 
to links in output node, shown in Fig. 4. Clearly IP1 
differs significantly from others. It has the biggest peak 
value and is placed far from origin. 

This example shows that the node with maximum 
sensitivity, v1 passes most of the information in the 
neural network architecture, itself. 

In other words, if the information distribution 
becomes uniform, all nodes will have an equal 
sensitivity. 
 
4 Output error model 

Suppose that inputs of a MLP are random variables 
with a uniform or Gaussian distributed function. Three 

theorems are presented to model the effect of stuck at 0 
faults in a MLP.  

 
Theorem 1: If the inputs of a linear neuron have 
uniform or Gaussian distributions, then its output will 
have a Gaussian distribution. 
Proof: It is a direct application of central limit theorem 
[33].♣ 

 
Theorem 2: If the inputs of a non-linear neuron with 
bipolar sigmoid activation function have a uniform or 
Gaussian distribution, then the distribution of its output 
is a Gaussian with half mean and variance values of the 
weighted checksum defined by:  

∑
=

=
n

1i
kixwS  (17) 

Proof: According to theorem 1, S has a Gaussian 
distribution with mean µs and variance σs. 

2
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The output y is defined by a bipolar sigmoid function 
as: 

S
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Fig. 4 Distribution function of information packages a) IP 1       b) IP2      c) IP3      d) IP4  
in a 3-4-1 MLP trained with conventional BP algorithm 
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Distribution function of y can be measured as [33]: 

))y(h(P)y(h)y(P Sy ′=  (20) 

In which h(y) is the inverse of equation (19) defined 
by: 

1y1    ,           
y1
y1ln)y(hs <<−

+
−

−==  (21) 

Differentiating equation (21) result: 

2y1
2)y(h

−
=′  (22) 

By substituting (21) and (22) in (20) results: 
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With the assumption that y is usually around origin, 
the two following approximations are valid: 

2
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And substituting equations (25) and (24) in (23), we 
have: 
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which is a Gaussian with 
2
Sµ

=µ and 
2
Sσ

=σ .♣ 

Theorem 3: If inputs to a neural network are random 
variables with uniform or Gaussian distributions, error 
introduced by stuck at 0 faults, obey a Gaussian model 
too. 
Proof: To simplify the proof, suppose that the hidden 
neurons are non-linear with bipolar sigmoid activation 
functions but output nodes are linear. Every output node 
computes a weighted sum on the hidden layer nodes. 
Now consider ohk as the output of the hidden node k 
and wki as the connecting weights between hidden 
neuron k and output node i. It is clear that contribution 
of hidden neuron h to output is equal to wki*ohk. A stuck 
at 0 fault in hidden node k, which forces wki*oh to zero, 
will introduce an absolute error equal to wki*ohk. So the 
output error is proportional to ohk, which has a Gaussian 
distribution according to theorem 2. Hence the output 
error will have a Gaussian distribution too. ♣ 
For a fixed input pattern the error will choose one of the 
values from the set F={w1.oh1, w2.oh2,..., wn.ohn}. So 
the expected value and variance of output error are: 

∑
=

=µ
n

1i
iif oh.w

N
1  (27) 

∑
=

µ−=δ
n

1i

2
fiif )oh.w(

N
1  (28) 

In equation (27) the term ∑ ii oh.w  plus the bias value 
will produce the actual output, which must approximate 
the target. So µf  depends on target mean and bias value. 
On the other hand, equation (28) shows the information 
package variance. We will show that choosing 
appropriate weights during the learning phase can 
reduce σf  and µf. 
 
5 UDBP learning algorithm 

Based on the error model introduced in section 4, the 
UDBP (Uniformly Distributed Back Propagation) 
algorithm is presented to minimize µf  and σf of output 
error by distributing information packages uniformly in 
the neural network architecture. A new error function 
will be defined as: 

∑∑∑ µ−××+−=
j i

2
iiji

j

2
jj )woh(

N
1v)to(

2
1E~  (29) 

∑ ×=µ
n

nini woh
N
1  (30) 

N denotes the number of hidden layer nodes. The 
second term in (29) is the total variance of information 
packages in the neural network. Differentiating (29) in 
respect to wij results in: 

)woh(oh
N

)to(
w 
o 

w 
E~ 

iijiijj
ij

j

ij
µ−
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∂

∂
=

∂
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For a linear output the equation is changed to: 

)]woh(
N

to[oh
w 
E~ 

jijijji
ij

µ−
λ

+−=
∂
∂  (32) 

We have introduced a new parameter called λ, which 
controls the uniformity of information packages. A large 
value of λ usually tends to a more uniform data 
distribution in the neural network architecture. 
According to these equations the learning is achieved 
by: 

ij
ijij w 

E~ )old(w)new(w
∂
∂

µ−=  (33) 

In which, µ  is the learning rate parameter. 
Similar equations can be written for a bias learning rule: 

)b(to
b 
E~ 

jjjj
j

µ−λ+−=
∂
∂  (34) 

And, 

j
jj b  

E~ )old(b)new(b
∂
∂

µ−=  (35) 

The conventional BP algorithm is modified according to 
equations (34) to (35) for training the output layer 
weights. The new algorithm, which is called Uniformly 
Distributed Back Propagation (UDBP), is as the 
following: 
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UDBP algorithm: 
 
Step 0: Initialize weights, µ and λ. 
Step 1: While stopping condition is false do steps 2-9 
Step 2: For each input vector do Steps 3-8 
Step 3: Each input node receives input signal and 
broadcast it to hidden layer units. 
Step 4: Each hidden node sums its weighted inputs and 
applies its activation function according to equations (8) 
and (9). 
Step 5: Each output node sums its weighted input signal 
and produces its output, too. 
Step 6: 
Step 6-1: For each output node the error information 
term is computed using equation (31) or (32). 
Step 6-2: For each output node the bias gradient term is 
computed using equation (34). 
Step 7: For each hidden node, equations (12) and (13) 
are computed. 
Step 8: For each output and hidden node, weights are 
updated according to: 
 

ijijij w)old(w)new(w ∆+=  η 
 
Step 9: Test stopping condition. 
 
Example 2: To evaluate UDBP algorithm, the 3-4-1 
MLP network in Fig. 3 is trained to approximate the 
non-linear function of equation (16). The training and 
testing sets and conditions are the same as Example 1 
and λ is 0.8 here. Table-2 shows the sensitivity 
measures for the trained neural network. 

Table 2 Weight sensitivity for 3-4-1 MLP trained by UDBP 
algorithm 

Weight in 
1’st layer sensitivity Weight in 

2’nd layer sensitivity 

w11 

w12 

w13 

w14 

0.0343 
0.0054 
0.0053 
0.0051 

v1 

v2 

v3 

v4 

0.0359 
0.0304 
0.0301 
0.0289 

 
Comparing table 1 and table 2 it seems that the 
maximum sensitivity of neural network is reduced from 
1.8808 to 0.0359. On the other hand it is clear that the 
sensitivity of all hidden nodes are approximately equal.  
Although the UDBP is just applied to output layer, the 
sensitivity of weights in first layer is also improved. 

Fig. 5 shows the distribution function of IP1 to IP4 
for the network trained by UDBP. Comparing with fig. 
4 it is clear that all distributions are moved toward 
origin and their peak values are very close to each other. 
 
6 Simulation results 

Three other algorithms consisting of WRTA 
(Weight Restricted Training Algorithm), ADP 
(Addition/Deletion Procedure) [14] and N-FTBP (N 
Fault Tolerant Back Propagation) [10] are chosen to be 
compared with UDBP algorithm. The 3-4-1 MLP 
network used in examples 1 and 2 is trained again for all 
algorithms. Table 3 shows the measured sensitivity for 
all hidden layer nodes after completion of training 
process for unique initial weights. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5 Distribution function of information packages a) IP 1       b) IP2      c) IP3      d) IP4 
In a 3-4-1 MLP network trained with UDBP algorithm 
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In N-FTBP algorithm one stuck at 0 fault is injected 
for fifty iterations of BP training algorithm. In WRTA 
the maximum value of weights for output layer is 1 and 
for first layer is 5. ADP algorithm performs deletion of 
the node with least sensitivity and duplication of the one 
with maximum sensitivity after 100 iteration of BP 
algorithm. Learning rate is 0.05 for all algorithms. 
Table-3 shows that UDBP has the most uniform 
sensitivity among all. The average response of ADP is 
slightly better. N_FTBP and WRTA show a moderate 
improvement compared to standard BP. Standard BP 
has the worst fault tolerance itself. 
In another application, a low pass FIR filter [34] with 
transfer function of: 

H(z)= -0.0087+0.252z-2+0.5138z-3+0.252z-4- 

           0.0087 z-5 
(36) 

is also approximated with a 6-4-1 MLP. The maximum 
iteration is 50000 for all mentioned algorithms. Table-4 
shows the best computed sensitivity in the output layer 
obtained for different algorithms. 

The 6-4-1 MLP network trained to approximate the 
FIR filter is a dynamic neural network indeed. Data 
stream moves from one input node to next one in each 
time step. This will help the network to produce a more 
uniform data distribution compared to static neural 
networks. Table-4 shows that the average sensitivity for 
a dynamic neural network is less than a static neural 
network. UDBP has the least sensitivity however the 
ADP and N_FTBP have moderate responses. WRTA 
response is near to UDBP. 
 
7 Fault correction using UDBP 

Convolutional codes are usually used over the 
transmission channels, through which both information 
and parity bits are sent. To achieve fault detection and 
correction properties of this code in a nonlinear process 
with the minimum overhead computations, we propose 
the block diagram in fig 5. 
The main architecture is similar to a normal ABFT 
scheme except of the neural network and delay line in 
the information pass which replace the parity generator 
part of a systematic convolutional encoder. The upper 
way is the normal Process data flow which passes 
through the nonlinear process block and then fed to the 
convolutional encoder to make parity sequence y”. On 
the other hand MLP network is trained by UDBP 
algorithm to have a direct parity,  y’, equal to y” in the 
absence of any noise and faults in system. So the 

syndrome sequence is a stream of zero or near zero 
values in normal operation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 Block diagram of the neural based ABFT 
 
We have modeled faults in a nonlinear process block 
with module noise A while the encoder and neural 
network noises are modeled with modules B and C. 
Since these two last noises contribute in syndrome 
additively we can delete one of them without any 
degradation. 
 
7-1  Example and Simulations 
A (3, 2, 2) systematic convolutional code with 
generators of: 

 (37) 

 (38) 

is used to evaluate the error detect ability and correct 
ability of our proposed method jointed with a MLP with 
4 inputs 21 nodes in hidden layer and one output. A 
block processing SINE function with two inputs is 
chosen as the nonlinear process to be protected. The 
generator matrix of the code for its first constraint 
length is as: 

 
Table 3 Sensitivity measures for a 3-4-1 MLP network trained by different algorithms 

Sensitivity of nodes in hidden layer Algorithm v1 v2 V3 v4 Average 
BP 

UDBP 
WRTA 

N-FTBP 
ADP 

1.8808 
0.0359 
0.2100 
0.0111 
0.0367 

0.0916 
0.0304 
0.0867 
0.0014 
0.0193 

0.0481 
0.0301 
0.0722 
0.0002 
0.0375 

0.5503 
0.0289 
0.0734 
0.4205 
0.0276 

0.6452 
0.0313 
0.1150 
0.1083 
0.0302 

Table 4 Sensitivity measures for a 6-4-1 MLP trained by different algorithms 
Sensitivity of nodes in hidden layer Algorithm v1 v2 v3 v4 Average 

BP 
UDBP 
WRTA 

N-FTBP 
ADDROP 

0.0003 
0.0032 
0.0060 
0.0186 
0.0010 

0.0048 
0.0051 
0.0059 
0.0129 
0.0191 

0.0351 
0.0052 
0.0059 
0.0002 
0.0125 

0.0014 
0.0046 
0.0056 
0.0003 
0.0010 

0.0104 
0.0045 
0.0059 
0.0080 
0.0083 
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(39) 

And according to equation 2-3 the parity check matrix 
for the first constraint length is: 

 

(40) 

We have two parity triangles for each generator as: 

 

(41) 

It is clear that the code is self orthogonal and we can 
form a set of two orthogonal check sums on the 
information error bit, hence, tML=1 and the code can 
correct single faults in each constraint length of code 
which is three here. Fig 6a shows the main process 
which is a two input SINE block. The outputs y1 and y2 
are subjected to single s-at-0 faults modeled with noise 
modules A1 and A2. The faulty outputs now shown 
with b1 and b2 are then fed to convolutional encoder as 
in fig 6b. The generated code stream, y”, is compared 
with MLP output y’ as shown in fig 6c. The majority 
logic now produces two error signals which are fed back 
to delayed output streams in fig 6a and correct outputs. 
y1 and y2 are corrected outputs which their validity is 
governed by majority logic decoding rule. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6c SINE block input -output 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6a Systematic (3, 2, 2) convolutional encoder 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6a Complete Majority Logic Decoder for used in this 
example - ML is the Majority Logic gate 
 
The MLP inputs are selected according to equations (1) 
and (2). The network is then trained in the absence of 
any noise so that it’s output approximates the SINE 
block function followed by the (3,2,2) convolution 
encoder. 

Fig. 7 shows the simulation results after 50000 
training iterations. In fig-7a the syndrome sequence in 
the absence of any faults is shown, which is due to 
neural network limited accuracy. This error value in 
most times is less than 0.005. However there are also 
few errors as great as 0.01. Therefore we will select a 
threshold value equal to 0.05 for error detection 
purposes.  

The whole system is then subjected to s-a-0 faults 
every 10 steps at SINE block outputs (module noise A1 
or A2 in fig 6) and at MLP or Encoder output (module 
noise C or B in fig 5). Fig-7b shows the syndrome 
sequence for faults in first output of SINE block, y1. It is 
clear that there are two equal nonzero values after each 
fault occurrence. In fig-7c the same sequence is shown 
for faults in the second output of SINE block, y2. Again 
there are two nonzero values for each fault but the 
recent values are separated by a single space gap. Fig-6d 
shows on the other hand, the syndrome for faults in 
encoder and neural net blocks. It is clear that the 
syndrome contains single nonzero values for injected 
faults. Therefore we have three distinct sequences for 
each fault source which is benefit of convolutional 
coding used. If there is only a single fault in every 
constraint length (3 in this case) the majority logic 
decoding can correct the fault. 
 
8 Conclusions 

In this paper we first showed that standard BP 
algorithm can not yield to a uniform data distribution 
over the neural network architecture. A measure of 
sensitivity defined to evaluate fault tolerance of neural 
network and then we showed that the sensitivity of a 
link is closely related to the amount of information 
passes through it. Based on the assumption of using 
input variables with uniform or Gaussian distribution 
functions, we proved that the distribution of output error 
caused by stuck at 0 faults in a MLP network is 
approximately a Gaussian too. UDBP algorithm then 
introduced to minimize mean and variance of the output 
error. Simulation results show that UDBP has the least 
sensitivity and the highest fault tolerance among other 
algorithms such as WRTA, N-FTBP and ADP. UDBP 
has just one extra parameter compared to standard BP. It 
requires three extra multiplications and two extra 
additions in each iteration compared to BP. 
Then we coupled a MLP neural network trained with 
UDBP algorithm to a convolutional encoder in an 
ABFT scheme to demonstrate the feasibility and  
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Fig. 7a Syndrome sequence for no fault condition 
 

 
Fig. 7b Syndrome sequence for faults due to Noise source A1 

 
Fig. 7c Syndrome sequence for faults due to Noise source A2 
 

 
Fig. 7d Syndrome sequence for faults due to Noise sources C 
or B 

 
expandability obtained for fault detection and correction 
in nonlinear block processes. The trained neural 
network can itself tolerate single faults, and the used 
majority logic gates are very simple. So unlike the other 
ABFT techniques there is no need to apply extra 
hardware or software to protect these additional blocks. 
In addition, neural network learn ability permits to 
change process block functionality without much 
consideration. Which can not be obtained through 
conventional ABFT techniques? 
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