
Iranian Journal of Electrical & Electronic Engineering, Vol. 1, No. 1, January 2005. 1

A generalized ABFT technique using a fault tolerant
neural network

A. Moosavienia and K. Mohammadi

Abstract: In this paper we first show that standard BP algorithm cannot yeild to a uniform
information distribution over the neural network architecture. A measure of sensitivity is
defined to evaluate fault tolerance of neural network and then we show that the sensitivity
of a link is closely related to the amount of information passes through it. Based on this
assumption, we prove that the distribution of output error caused by s-a-0 (stuck at 0) faults
in a MLP network has a Gaussian distribution function. UDBP (Uniformly Distributed
Back Propagation) algorithm is then introduced to minimize mean and variance of the
output error. Simulation results show that UDBP has the least sensitivity and the highest
fault tolerance among other algorithms such as WRTA, N-FTBP and ADP. Then a MLP
neural network trained with UDBP, contributes in an Algorithm Based Fault Tolerant
(ABFT) scheme to protect a nonlinear data process block. The neural network is trained to
produce an all zero syndrome sequence in the absence of any faults. A systematic real
convolution code guarantees that faults representing errors in the processed data will result
in notable nonzero values in syndrome sequence. A majority logic decoder can easily detect
and correct single faults by observing the syndrome sequence. Simulation results
demonstrating the error detection and correction behavior against random s-a-0 faults are
presented too.

Keywords: fault tolerance, back propagation, MLP network, function approximation,
ABFT, convolutional codes, majority logic decoding.

1 Introduction1

One of the most attractive features of neural
networks is their capability to model nonlinear systems
in addition to their intrinsic fault tolerant ability. In fact
neural networks have been successfully used for fault
diagnosis in nonlinear systems [1], [2], [3]. However
recent researches [4], [5], [31], show that these
networks are not really fault tolerant. Indeed, there are
always many nodes in a large neural network that do not
contribute in neural network function, so in contrast to
using redundant nodes, fault tolerance is not improved.
On the other side, we can often find nodes that are too
important and their failure can cause a system crash.
On the other hand, using conventional fault tolerant
techniques, such as Triple Modular Redundancy (TMR)
and Triple Time Redundancy (TTR) [6], yields to either
a very expensive and large system or a long time
overhead. Algorithm based fault tolerant techniques are
good choices for error detection and correction in linear
systems, using cheap and small variations in hardware
or software [7].
In this paper we will first introduce a fault tolerant
neural network architecture, based on MLP (Multilayer
Perceptron) and a new learning algorithm, based on
conventional error Back Propagation (BP) algorithm.
Then we utilize this neural network in an ABFT
architecture using convolutional codes to correct single
faults in a nonlinear system.
Two main approaches have been proposed to improve
fault tolerance in an artificial neural network: 1)

Iranian Journal of Electrical & Electronic Engineering, 2005.
Paper first received 11th April 2002 and in revised from 15th
September 2004.
A. Moosavienia is with the Department of Electrical Engineering,
Khajeh Nasiroddin Toosi Industrial University, Seyed Khandan,
Tehran, Iran.
K. Mohammadi is with the Department of Electrical Engineering, Iran
University of Science and Technology, Narmak, Tehran 16844, Iran.

modified learning algorithms and 2) modified
architectures. Most of the reported papers deal with
learning phase or algorithm. In fact, it is believed that
distributed architecture of neural networks is not
suitably utilized by current common learning algorithms
such as BP, in order to have or enhance fault tolerance
in neural networks. In [8] this enhancement is achieved
by manipulating the gradient of sigmoid function during
learning phase. [9] and [10] have used the well known
method of fault injection during learning procedure and
shown that fault behavior of neural network can be
greatly improved against stuck-at-0 and stuck-at-1
faults. [11] have introduced a network called
“Maximally Fault Tolerant neural Network”, which its
weight coefficients are estimated through a nonlinear
optimization problem to get the maximum allowable
fault tolerance in the neural network. There are few
reports considering the neural network architecture to
improve fault tolerance. [12] studied feedback neural
networks with hard limiting outputs. The results show
that fault tolerant of such networks can not be improved
through adding more nodes. [13] addressed some
modification on architecture such as addition/deletion
nodes but it is still based on learning procedure. In [14]
a method is presented to break critical nodes in a trained
MLP to have a predefined level of fault tolerance. In [4]
a two layer feed forward neural network is modified to
detect faulty links based on the assumption that the
weights of all links are known and stored in a memory.
The following section of this paper introduces briefly
the ABFT concepts. Section 3 describes the convolution
code used in this paper. Then in section 4 a Multilayer
Perceptron network with conventional BP algorithm in
presented. In section 5 we introduce fault model and
sources in a neural network. Section 6 and 7 contain our
modified architecture and learning algorithm
respectively. Simulation details and results are provided
in section 8 and finally section 9 concludes the main
advantages of the proposed method.

Iranian Journal of Electrical & Electronic Engineering, Vol. 1, No. 1, January 2005. 2

2 ABFT scheme
ABFT has been suggested to design fault tolerant array
processors and systolic array systems. The scheme is
capable to detect and sometimes correct errors caused
by permanent or transient failures in the system. It was
first proposed as a checksum approach for matrix
operations [15], [16]. Since then, the technique has been
extended to many digital signal processing applications
such as Fast Fourier Transform [17], [18], solving linear
and partial differential equations [19],[23], digital filters
[20] and to protect linear [21] and general
multiprocessor systems[22].
Fig.1 shows the basic architecture of an ABFT system.
Existing techniques use various coding schemes to
provide information redundancy needed for error
detection and correction. As a result this
encoding/decoding must be considered as the overhead
introduced by ABFT.

Fig. 1 General architecture of ABFT

The coding algorithm is closely related to the running
process and is often defined by real number codes
generally of the block types [24]. Systematic codes are
of most interest because the fault detection scheme can
be superimposed on the original process box with the
least changes in the algorithm and architecture.
In most previous ABFT applications, the process to be
protected is often a linear system. In this paper we
assume a more common case consisting linear or
nonlinear systems but still constrain ourselves to static
systems. This assumption is due to selecting a static
neural network in the main architecture.

2.1 Convolutional codes

A convolutional encoder, processes data stream
sequentially and for every k information symbols
presented to it, there are n (n>k) output symbols. Hence,
n-k parity codes are generated. The coding scheme
depends on the history of a certain number of input
symbols. The total register length used in decoder is
called constraint length. This code has been used as a
suitable mechanism in data communication for many
years [25]. Although they are basically designed to
protect data streams on finite fields, but researches on
infinite fields is also reported [26]. We consider only
systematic forms of convolutional codes because the
normal operation of Process block is not altered and
there is no need to decoding for obtaining true outputs.
In addition systematic convolutional codes are proved to
be noncatastrophic.
The generator matrix of a systematic convolutional
code, G, is a semifinite matrix evolving m finite
submatrixes as:

(1)

where I and 0 are identity and all zero k×k matrixes
respectively [32] and Pi with i= 0 to m is a k×(n-k)
matrix whose entries are :

(2)

Unfilled areas in the G indicate zero values. The parity
check matrix associated to this code is given by:

(3)

I and 0 are identity and all zero (n-k)×(n-k) matrixes
respectively. The syndrome equations, denoted by
vector S, are given by:

S=rHT=eHT (4)

Where r is the received sequence and e is error pattern.
When r is a code word S is zero else it have some non-
zero values.
There are three principal ways of decoding
convolutional codes, Viterbi decoding, sequential
decoding and majority-logic decoding [24]. Viterbi
algorithm is an optimal decoding procedure based on
Maximum Likelihood approach but it requires 2k
computations per decoded information bits. On the other
hand it has a decoding delay equal to the information
frame length, so it consumes a large amount of memory
and computation time. Sequential decoding is a near
optimal scheme with an average of 1 or 2 computations
per information bit but still has a delay as long as input
data stream. A majority-logic decoder on the other hand
has the least performance but it needs one constraint
length of code and just one computation per bit for
decoding. So it minimizes memory usage and has the
highest decoding speed. This paper therefore uses the
majority-logic decoding for its convolutional code.

2.2 Self Orthogonal Codes

Majority logic decoding is based on the orthogonal
parity-check sums, i.e. the equations relating any
syndrome bit or any sum of them to channel error bits.
By definition a set of J such summations are orthogonal
on an error bit ej if each sum contains ej but no other
error bit is in more than one check sum equation.
Majority-logic decoding rule says that the estimated
error bit, êj, is 1 if more than tML=J/2 of J orthogonal
check sums have value 1. tML is called the majority-logic
correcting capability of the code [24].
To employ the maximum error correcting capability of
the code, it must be completely orthogonalizable [24],
that is a code in which J=dmin-1. By definition dmin is:

dmin=min{w[v]m : u0 ≠ 0 } (5)

Where v is a code word and u0 is the first nonzero input
information sequence. Note that dmin is calculated over
the first constraint length of the code.

D
E
C
O
D
E
R

E
N
C
O
D
E
R

PROCESS

x(0)
x(1)

x(n-2)
x(n-1)

z(0)
z(1)

z(m-2)
z(m-1)

Iranian Journal of Electrical & Electronic Engineering, Vol. 1, No. 1, January 2005. 3

Self-orthogonal codes are one class of codes that are
completely orthogonalizable. In such a code, for each
information error bit the set of all syndrome bits that
involve that bit, form an orthogonal check set on that bit
without the need for adding syndrome bits. Using these
codes make an easier implementation of majority-logic
decoding.

3 Data distribution in a MLP network

MLP network consists of several cascaded layers of
neurons with sigmoid activation functions [27]. The
input vector, feeds into each of the first layer neurons,
the outputs of this layer feed into each of the second
layer neurons and so on, as shown in Fig. 2.

The layers between input and output are called
hidden layers. In this paper feed forward I-H-O neural
networks are considered. Which H, O and I denote
nodes in input layer, hidden layer and output layer
respectively.

Fig. 2 Architecture of a typical MLP network.

To evaluate the fault tolerance of a MLP network we
present two definitions as the following:

Definition 1: s(wi) is defined as the sensitivity of neural
network to weight wi that is the effect on mean square
error (MSE) when wi is forced to zero.
Sensitivity can be measured by:

)W(E)W(E)w(s i −′= (6)

In which W=(w1,...,wk) denotes the vector of all
weights of the neural network and W’ is the new vector
in which wi is stuck at zero. E(W) is the MSE for weight
vector W, over all training set.

Definition 2: The Iij, the information package (IP) of
link wij, is defined as:

ijiij wohI ×= (7)

Where ohi is the output of hidden neuron i and wij is
the connecting weight between hidden neuron i and
output neuron j.

Most often the nodes are fully connected, i.e., every
node in layer l is connected to every node in layer l+1.
In this paper we assume input vector as the first layer in
the neural network. MLP networks can easily perform
Boolean logic operations, pattern recognition,
classification and nonlinear function approximation
[28]. Usually output neurons use linear activation
functions rather than nonlinear sigmoid, since this tends
to make learning easier. MLP is a supervised neural
network that learns through examples and BP is the
most common used learning algorithm that is a steepest
descent gradient-based algorithm. In this paper we
assume that the activation function of each neuron is a

bipolar sigmoid by the following equation:

)sexp(1
)sexp(1

)s(f
i

i
i −+

−−
= (8)

∑ θ−×=
j

iiiji xws (9)

xj is neuron j’s output and θi is a bias value for the
neuron i. Standard BP algorithm changes wij in order to
reduce the output error, E, defined by:

∑ −=
i

2
ii)ot(

2
1E (10)

Where tj is j’th output target and oj is the j’th
estimated output [29].

Using the steepest descent gradient rule, the change
of wij is expressed as:

ij
ij w

Ew
∂
∂

η−=∆ (11)

η is a positive number called “learning rate” which
determines step size in wij changes. Selecting a suitable
η value plays an important role in network learning
convergence [30].

Back propagation algorithm says that:
P
j

P
iij ow ηδ=∆ (12)

)u(f).ot(P
i

P
i

P
i

P
i ′−=δ (13)

)u(f)..w(i
P
k

k
ki

P
i ′δ=δ ∑ (14)

Where equation (13) is for an output layer and
equation (14) is for neurons in hidden layer. ′f () is the
derivative of the sigmoid and is calculated by:

))x(f1)(x(f2)x(f −=′ (15)

To evaluate the fault tolerant behavior of a MLP
trained with standard BP we will continue by an
example.

Example 1: A 3-4-1 neural network as in Fig. 3 is
trained to approximate a non-linear function defined in
equation (16).

zyx
1o

++
= (16)

The training set is TL={0.1, 0.2,..., 1.1}. BP is
iterated for 30000 epochs with a learning rate of 0.05.
The trained network is then subjected to four stuck-at-0
faults according to each node of hidden layer.

Fig. 3 The 3-4-1 MLP network used in Example 1.

Inputs hidden layers output layer

x1

xi

xn

o1

ok

x1

x2

x3

o1

v1
v2

v3

v4

w11

Iranian Journal of Electrical & Electronic Engineering, Vol. 1, No. 1, January 2005. 4

Table 1 shows the sensitivity measures for 10000 input
vectors selected randomly from the test set TT={0.10,
0.11,..., 1.11}.

Table 1 Weight sensitivity for MLP trained by standard BP
algorithm

Weight in
1’st layer sensitivity Weight in

2’nd layer sensitivity

w11

w12

w13

w14

0.0758
0.0050
0.0006
0.0012

v1

v2

v3

v4

1.8808
0.0916
0.0581
0.5503

In this example v1 -v4 are the weights in output layer

and w11-w14 are the weights from input node 1 to all
nodes in hidden layer. Clearly the network is not too
sensitive to the weights in first layer. However, in the
output layer there is a large sensitivity to weight v1.

It is worth to look at histogram of IPs corresponding
to links in output node, shown in Fig. 4. Clearly IP1
differs significantly from others. It has the biggest peak
value and is placed far from origin.

This example shows that the node with maximum
sensitivity, v1 passes most of the information in the
neural network architecture, itself.

In other words, if the information distribution
becomes uniform, all nodes will have an equal
sensitivity.

4 Output error model

Suppose that inputs of a MLP are random variables
with a uniform or Gaussian distributed function. Three

theorems are presented to model the effect of stuck at 0
faults in a MLP.

Theorem 1: If the inputs of a linear neuron have
uniform or Gaussian distributions, then its output will
have a Gaussian distribution.
Proof: It is a direct application of central limit theorem
[33].♣

Theorem 2: If the inputs of a non-linear neuron with
bipolar sigmoid activation function have a uniform or
Gaussian distribution, then the distribution of its output
is a Gaussian with half mean and variance values of the
weighted checksum defined by:

∑
=

=
n

1i
kixwS (17)

Proof: According to theorem 1, S has a Gaussian
distribution with mean µs and variance σs.

2

s

s)
S

(

S
s e

n2
1)S(P δ

µ−
−

δ
= (18)

The output y is defined by a bipolar sigmoid function
as:

S

S

e1
e1)s(fy

−

−

+
−

== (19)

(a) IP1

(b) IP2

(c) IP3

(d) IP4

Fig. 4 Distribution function of information packages a) IP 1 b) IP2 c) IP3 d) IP4
in a 3-4-1 MLP trained with conventional BP algorithm

Iranian Journal of Electrical & Electronic Engineering, Vol. 1, No. 1, January 2005. 5

Distribution function of y can be measured as [33]:

))y(h(P)y(h)y(P Sy ′= (20)

In which h(y) is the inverse of equation (19) defined
by:

1y1 ,
y1
y1ln)y(hs <<−

+
−

−== (21)

Differentiating equation (21) result:

2y1
2)y(h

−
=′ (22)

By substituting (21) and (22) in (20) results:

1y1 , e
2
1

y1
2)y(P

2
S

2
S))

y1
y1(ln(

S
2y +<<−

δπ−
= δ

µ−
−
+

−
 (23)

With the assumption that y is usually around origin,
the two following approximations are valid:

2
y1

2
2 ≈

−
 (24)

y2
)y21ln(

)
y1

y21ln(
y1
y1ln

≈
+≈

−
+=

−
+

 (25)

And substituting equations (25) and (24) in (23), we
have:

2S

2S

)
2

(

)
s

y(

S
y e

2
2

1)y(P
σ

µ
−

−

σ
π

= (26)

which is a Gaussian with
2
Sµ

=µ and
2
Sσ

=σ .♣

Theorem 3: If inputs to a neural network are random
variables with uniform or Gaussian distributions, error
introduced by stuck at 0 faults, obey a Gaussian model
too.
Proof: To simplify the proof, suppose that the hidden
neurons are non-linear with bipolar sigmoid activation
functions but output nodes are linear. Every output node
computes a weighted sum on the hidden layer nodes.
Now consider ohk as the output of the hidden node k
and wki as the connecting weights between hidden
neuron k and output node i. It is clear that contribution
of hidden neuron h to output is equal to wki*ohk. A stuck
at 0 fault in hidden node k, which forces wki*oh to zero,
will introduce an absolute error equal to wki*ohk. So the
output error is proportional to ohk, which has a Gaussian
distribution according to theorem 2. Hence the output
error will have a Gaussian distribution too. ♣
For a fixed input pattern the error will choose one of the
values from the set F={w1.oh1, w2.oh2,..., wn.ohn}. So
the expected value and variance of output error are:

∑
=

=µ
n

1i
iif oh.w

N
1 (27)

∑
=

µ−=δ
n

1i

2
fiif)oh.w(

N
1 (28)

In equation (27) the term ∑ ii oh.w plus the bias value
will produce the actual output, which must approximate
the target. So µf depends on target mean and bias value.
On the other hand, equation (28) shows the information
package variance. We will show that choosing
appropriate weights during the learning phase can
reduce σf and µf.

5 UDBP learning algorithm

Based on the error model introduced in section 4, the
UDBP (Uniformly Distributed Back Propagation)
algorithm is presented to minimize µf and σf of output
error by distributing information packages uniformly in
the neural network architecture. A new error function
will be defined as:

∑∑∑ µ−××+−=
j i

2
iiji

j

2
jj)woh(

N
1v)to(

2
1E~ (29)

∑ ×=µ
n

nini woh
N
1 (30)

N denotes the number of hidden layer nodes. The
second term in (29) is the total variance of information
packages in the neural network. Differentiating (29) in
respect to wij results in:

)woh(oh
N

)to(
w
o

w
E~

iijiijj
ij

j

ij
µ−

λ
+−

∂

∂
=

∂
∂ (31)

For a linear output the equation is changed to:

)]woh(
N

to[oh
w
E~

jijijji
ij

µ−
λ

+−=
∂
∂ (32)

We have introduced a new parameter called λ, which
controls the uniformity of information packages. A large
value of λ usually tends to a more uniform data
distribution in the neural network architecture.
According to these equations the learning is achieved
by:

ij
ijij w

E~)old(w)new(w
∂
∂

µ−= (33)

In which, µ is the learning rate parameter.
Similar equations can be written for a bias learning rule:

)b(to
b
E~

jjjj
j

µ−λ+−=
∂
∂ (34)

And,

j
jj b

E~)old(b)new(b
∂
∂

µ−= (35)

The conventional BP algorithm is modified according to
equations (34) to (35) for training the output layer
weights. The new algorithm, which is called Uniformly
Distributed Back Propagation (UDBP), is as the
following:

Iranian Journal of Electrical & Electronic Engineering, Vol. 1, No. 1, January 2005. 6

UDBP algorithm:

Step 0: Initialize weights, µ and λ.
Step 1: While stopping condition is false do steps 2-9
Step 2: For each input vector do Steps 3-8
Step 3: Each input node receives input signal and
broadcast it to hidden layer units.
Step 4: Each hidden node sums its weighted inputs and
applies its activation function according to equations (8)
and (9).
Step 5: Each output node sums its weighted input signal
and produces its output, too.
Step 6:
Step 6-1: For each output node the error information
term is computed using equation (31) or (32).
Step 6-2: For each output node the bias gradient term is
computed using equation (34).
Step 7: For each hidden node, equations (12) and (13)
are computed.
Step 8: For each output and hidden node, weights are
updated according to:

ijijij w)old(w)new(w ∆+= η

Step 9: Test stopping condition.

Example 2: To evaluate UDBP algorithm, the 3-4-1
MLP network in Fig. 3 is trained to approximate the
non-linear function of equation (16). The training and
testing sets and conditions are the same as Example 1
and λ is 0.8 here. Table-2 shows the sensitivity
measures for the trained neural network.

Table 2 Weight sensitivity for 3-4-1 MLP trained by UDBP
algorithm

Weight in
1’st layer sensitivity Weight in

2’nd layer sensitivity

w11

w12

w13

w14

0.0343
0.0054
0.0053
0.0051

v1

v2

v3

v4

0.0359
0.0304
0.0301
0.0289

Comparing table 1 and table 2 it seems that the
maximum sensitivity of neural network is reduced from
1.8808 to 0.0359. On the other hand it is clear that the
sensitivity of all hidden nodes are approximately equal.
Although the UDBP is just applied to output layer, the
sensitivity of weights in first layer is also improved.

Fig. 5 shows the distribution function of IP1 to IP4
for the network trained by UDBP. Comparing with fig.
4 it is clear that all distributions are moved toward
origin and their peak values are very close to each other.

6 Simulation results

Three other algorithms consisting of WRTA
(Weight Restricted Training Algorithm), ADP
(Addition/Deletion Procedure) [14] and N-FTBP (N
Fault Tolerant Back Propagation) [10] are chosen to be
compared with UDBP algorithm. The 3-4-1 MLP
network used in examples 1 and 2 is trained again for all
algorithms. Table 3 shows the measured sensitivity for
all hidden layer nodes after completion of training
process for unique initial weights.

(a)

(b)

(c)

(d)

Fig. 5 Distribution function of information packages a) IP 1 b) IP2 c) IP3 d) IP4
In a 3-4-1 MLP network trained with UDBP algorithm

Iranian Journal of Electrical & Electronic Engineering, Vol. 1, No. 1, January 2005. 7

In N-FTBP algorithm one stuck at 0 fault is injected
for fifty iterations of BP training algorithm. In WRTA
the maximum value of weights for output layer is 1 and
for first layer is 5. ADP algorithm performs deletion of
the node with least sensitivity and duplication of the one
with maximum sensitivity after 100 iteration of BP
algorithm. Learning rate is 0.05 for all algorithms.
Table-3 shows that UDBP has the most uniform
sensitivity among all. The average response of ADP is
slightly better. N_FTBP and WRTA show a moderate
improvement compared to standard BP. Standard BP
has the worst fault tolerance itself.
In another application, a low pass FIR filter [34] with
transfer function of:

H(z)= -0.0087+0.252z-2+0.5138z-3+0.252z-4-

 0.0087 z-5
(36)

is also approximated with a 6-4-1 MLP. The maximum
iteration is 50000 for all mentioned algorithms. Table-4
shows the best computed sensitivity in the output layer
obtained for different algorithms.

The 6-4-1 MLP network trained to approximate the
FIR filter is a dynamic neural network indeed. Data
stream moves from one input node to next one in each
time step. This will help the network to produce a more
uniform data distribution compared to static neural
networks. Table-4 shows that the average sensitivity for
a dynamic neural network is less than a static neural
network. UDBP has the least sensitivity however the
ADP and N_FTBP have moderate responses. WRTA
response is near to UDBP.

7 Fault correction using UDBP

Convolutional codes are usually used over the
transmission channels, through which both information
and parity bits are sent. To achieve fault detection and
correction properties of this code in a nonlinear process
with the minimum overhead computations, we propose
the block diagram in fig 5.
The main architecture is similar to a normal ABFT
scheme except of the neural network and delay line in
the information pass which replace the parity generator
part of a systematic convolutional encoder. The upper
way is the normal Process data flow which passes
through the nonlinear process block and then fed to the
convolutional encoder to make parity sequence y”. On
the other hand MLP network is trained by UDBP
algorithm to have a direct parity, y’, equal to y” in the
absence of any noise and faults in system. So the

syndrome sequence is a stream of zero or near zero
values in normal operation.

Fig. 5 Block diagram of the neural based ABFT

We have modeled faults in a nonlinear process block
with module noise A while the encoder and neural
network noises are modeled with modules B and C.
Since these two last noises contribute in syndrome
additively we can delete one of them without any
degradation.

7-1 Example and Simulations
A (3, 2, 2) systematic convolutional code with
generators of:

 (37)

 (38)

is used to evaluate the error detect ability and correct
ability of our proposed method jointed with a MLP with
4 inputs 21 nodes in hidden layer and one output. A
block processing SINE function with two inputs is
chosen as the nonlinear process to be protected. The
generator matrix of the code for its first constraint
length is as:

Table 3 Sensitivity measures for a 3-4-1 MLP network trained by different algorithms

Sensitivity of nodes in hidden layer Algorithm v1 v2 V3 v4 Average
BP

UDBP
WRTA

N-FTBP
ADP

1.8808
0.0359
0.2100
0.0111
0.0367

0.0916
0.0304
0.0867
0.0014
0.0193

0.0481
0.0301
0.0722
0.0002
0.0375

0.5503
0.0289
0.0734
0.4205
0.0276

0.6452
0.0313
0.1150
0.1083
0.0302

Table 4 Sensitivity measures for a 6-4-1 MLP trained by different algorithms
Sensitivity of nodes in hidden layer Algorithm v1 v2 v3 v4 Average

BP
UDBP
WRTA

N-FTBP
ADDROP

0.0003
0.0032
0.0060
0.0186
0.0010

0.0048
0.0051
0.0059
0.0129
0.0191

0.0351
0.0052
0.0059
0.0002
0.0125

0.0014
0.0046
0.0056
0.0003
0.0010

0.0104
0.0045
0.0059
0.0080
0.0083

Nonlinear
Process

MLP

Delay
Encoder

M.L. Decoder

D
e
l
a
y

+

+

+

+

+

Noise A

Noise B
Noise C

y”
y’

Syndrome Output

Input

Iranian Journal of Electrical & Electronic Engineering, Vol. 1, No. 1, January 2005. 8

(39)

And according to equation 2-3 the parity check matrix
for the first constraint length is:

(40)

We have two parity triangles for each generator as:

(41)

It is clear that the code is self orthogonal and we can
form a set of two orthogonal check sums on the
information error bit, hence, tML=1 and the code can
correct single faults in each constraint length of code
which is three here. Fig 6a shows the main process
which is a two input SINE block. The outputs y1 and y2
are subjected to single s-at-0 faults modeled with noise
modules A1 and A2. The faulty outputs now shown
with b1 and b2 are then fed to convolutional encoder as
in fig 6b. The generated code stream, y”, is compared
with MLP output y’ as shown in fig 6c. The majority
logic now produces two error signals which are fed back
to delayed output streams in fig 6a and correct outputs.
y1 and y2 are corrected outputs which their validity is
governed by majority logic decoding rule.

Fig. 6c SINE block input -output

Fig. 6a Systematic (3, 2, 2) convolutional encoder

Fig. 6a Complete Majority Logic Decoder for used in this
example - ML is the Majority Logic gate

The MLP inputs are selected according to equations (1)
and (2). The network is then trained in the absence of
any noise so that it’s output approximates the SINE
block function followed by the (3,2,2) convolution
encoder.

Fig. 7 shows the simulation results after 50000
training iterations. In fig-7a the syndrome sequence in
the absence of any faults is shown, which is due to
neural network limited accuracy. This error value in
most times is less than 0.005. However there are also
few errors as great as 0.01. Therefore we will select a
threshold value equal to 0.05 for error detection
purposes.

The whole system is then subjected to s-a-0 faults
every 10 steps at SINE block outputs (module noise A1
or A2 in fig 6) and at MLP or Encoder output (module
noise C or B in fig 5). Fig-7b shows the syndrome
sequence for faults in first output of SINE block, y1. It is
clear that there are two equal nonzero values after each
fault occurrence. In fig-7c the same sequence is shown
for faults in the second output of SINE block, y2. Again
there are two nonzero values for each fault but the
recent values are separated by a single space gap. Fig-6d
shows on the other hand, the syndrome for faults in
encoder and neural net blocks. It is clear that the
syndrome contains single nonzero values for injected
faults. Therefore we have three distinct sequences for
each fault source which is benefit of convolutional
coding used. If there is only a single fault in every
constraint length (3 in this case) the majority logic
decoding can correct the fault.

8 Conclusions

In this paper we first showed that standard BP
algorithm can not yield to a uniform data distribution
over the neural network architecture. A measure of
sensitivity defined to evaluate fault tolerance of neural
network and then we showed that the sensitivity of a
link is closely related to the amount of information
passes through it. Based on the assumption of using
input variables with uniform or Gaussian distribution
functions, we proved that the distribution of output error
caused by stuck at 0 faults in a MLP network is
approximately a Gaussian too. UDBP algorithm then
introduced to minimize mean and variance of the output
error. Simulation results show that UDBP has the least
sensitivity and the highest fault tolerance among other
algorithms such as WRTA, N-FTBP and ADP. UDBP
has just one extra parameter compared to standard BP. It
requires three extra multiplications and two extra
additions in each iteration compared to BP.
Then we coupled a MLP neural network trained with
UDBP algorithm to a convolutional encoder in an
ABFT scheme to demonstrate the feasibility and

x1

x2
SINE

y1

y2

Noise A2

Noise A1

+

+

b1

b2

Error2

Error1

+

+

y1

y2

-

-

Delay

Delay

D D

D +

+ +

b1

b2

b1

b2

y”

D D
Syndrome

Error1

Error2

+ +

M
L

M
L

y”

y’ +
- - -

Iranian Journal of Electrical & Electronic Engineering, Vol. 1, No. 1, January 2005. 9

Fig. 7a Syndrome sequence for no fault condition

Fig. 7b Syndrome sequence for faults due to Noise source A1

Fig. 7c Syndrome sequence for faults due to Noise source A2

Fig. 7d Syndrome sequence for faults due to Noise sources C
or B

expandability obtained for fault detection and correction
in nonlinear block processes. The trained neural
network can itself tolerate single faults, and the used
majority logic gates are very simple. So unlike the other
ABFT techniques there is no need to apply extra
hardware or software to protect these additional blocks.
In addition, neural network learn ability permits to
change process block functionality without much
consideration. Which can not be obtained through
conventional ABFT techniques?

9 References
[1] Zoran Vukic, Dean Pavlekovic, H.Ozbolt

“Rudder Servo_system Fault Diagnosis
Using ”,ocean’98 conference
Proceedings,Vol.1, Pages 538-543, IEEE
1998.

[2] A. Berneiri, M. D’Apuzzo, L. Sansone, “A
Neural Network Approach For
Identification And Fault Diagnosis on
Dynamic Systems”, Instrumentation and
Measurment Technology Conference, May
1993, Pages 564-569.

[3] Ching-Yu Tyan and Paul
P.Wang,D.R.Bahler, “Neural Fault
Diagnosis and Fuzzy Fault Control for a
Complex Linear Dynamic System”, Fuzzy
systems 1995. Int. Joint conf. on the Fourth

IEEE International conf. on Fuzzy systems,
1995.

[4] Thitipong Tanprasert, Chularat Tanparasert,
“Probing Technique for Neural Net Fault
Detection” ,IEEE 1996.

[5] C. Khunasaraphan, K. Vanapipat and C.
Lursinsap, “Weight Shifting Techniques for
Self-Recovery Neural Networks”, IEEE
Trans. on Neural Networks Vol. 5, No. 4,
July 1994.

[6] B.W.Johnson, Design and Analysis of Fault
Tolerant Digital Systems, Addison Wesley
Pub. 1989.

[7] Shalini Yajnik and Niraj Jha, “Analysis and
Randomized Design of Algorithm Based
Fault Tolerant Multiprocessor System
Under an Extended Model”, IEEE Tran. on
Parallel and Distributed Systems, Vol. 8
No. 7 July 1997.

[8] Yasuyuki Taniguchi, Naotake Kamiura,
“Activation Function Manipulation for
Fault Tolerant Feed forward Neural
Networks” , Proceeding of the eight Asian
Test Symposium, IEEE 1998.

[9] Alan F. Murrayand Peter J. Edwards,
“Synaptic Weight Noise During Multilayer
Perceptron Training: Fault Tolerance and

Iranian Journal of Electrical & Electronic Engineering, Vol. 1, No. 1, January 2005. 10

Training Improvement “, IEEE Trans. on
Neural Networks Vol. 4, no 4, July 1993.

[10] Takhiro Ito and Itsuo Takanami, “On fault
Injection Approaches for Fault Tolerance of
Feed forward Neural Networks”,
Proceedings of Sixth Asian Test
Symposium, Pages 88-93, 1997.

[11] Chalapathy Neti, Michele H. Schneider and
Eric D. Young, “Maximally Fault Tolerant
Neural Networks”, IEEE Transaction on
Neural Networks Vol. 3 No 1, Jan 1992.

[12] Tao Zhang, Dongcheng Hu, Shiyuan Yang,
“Fault Tolerant Analysis of Feedback
Neural Networks with Threshold Neurons”,
Proceeding of the eight Asian Test
Symposium, IEEE 1998.

[13] Ching Tai Chiu, Kishan Mehrotra, Chiukuri
K. Mohan and Sanjay Ranka, “Training
Techniques to Obtain Fault Tolerant Neural
Networks", 24’th international symposium
on fault tolerant computing, 1994.

[14] O.J.Kwon and S.Y.Bang, “Design of Fault
Tolerant multilayer Perceptron with desired
level of robustness”, electronic letters Vol.
33 No. 12 1997.

[15] Cynthia J.Anfinson, “A linear Algebraic
Model of Algorithm Based Fault
Tolerance ”, IEEE Transaction on
Computers, Dec 1988, Vol 37 12, Pages
1599-1604.

[16] V.S.S.Nair ,and J. A. Abraham,” Real-
Number Codes for Fault Tolerant Matrix
Operations On Processor Arrays “,IEEE
Trans. on Computers, Vol. 39 No 4 April
1990.

[17] D. L. Tao and C. R. Hartmann, “A novel
Concurrent Error Detection Scheme for
FFT Networks”, IEEE transaction on
parallel and distributed systems, Vol. 4 No.
2 Feb 1993.

[18] Sying, Tyan Wang, “Algorithm Based Fault
Tolerant for FFT Networks”, IEEE
transaction on computing Vol. 43 No. 7
July 1994.

[19] K. N. Balasubramanya and K.
Bhuvaneswari and C. Siva Ram Murthy, “A
New Algorithm Based on Givens Rotations
for Solving Linear Equations on Fault
Tolerant Mesh Connected Processors”,
IEEE trans. on parallel and distributed
systems, Vol. 9 No. 8 August 1998.

[20] G. Robert Redinbo, and B. Zagar ,”
Modifying Real Convolutional Codes for
Protecting Digital Filtering Systems “ ,
IEEE Trans. on Information Theory ,Vol.
39 No 2 March 1993.

[21] Jan-Lung Sung and G. Robert Redinbo,
“Algorithm Based Fault Tolerant Synthesis

for Linear Operations”, IEEE transaction on
computers Vol. 45 No. 4 April 1996.

[22] D. M. Blough and Andrzej Pelc, “Almost
Certain Fault Diagnosis Through Algorithm
Based Fault Tolerance”, IEEE trans. on
Parallel and Distributed Systems, Vol. 5
No. 5 May 1994.

[23] Amber Roy Chowdhury, Prithviraj
Banerjee, “Algorithm Based Fault Location
and Recovery for Matrix Computations on
Multiprocessor Systems”, IEEE Trans. on
Computers ,Vol. 45 No 11 Nov. 1996.

[24] John Baylis ,Error- Correcting Codes: A
Mathematical Introduction, Chapman and
Hall LTD ,1998.

[25] Bernard Sklar, “A Tutorial On
Convolutional Coding For M-Ary Signals,
Trellis Coded Modulation”,Military
Communications Conference, 1988, Pages
637-645.

[26] G. Robert Redinbo and Bernhard Zagar,
“Modifying Real Convolutional Codes for
Protecting Digital Filtering Systems”, IEEE
trans. on Information Theory Vol. 39 No. 2
March 1993.

[27] Laurence Fausett, Fundamental of Neural
Networks, Printice Hall , 1994.

[28] Hush and Horne, “Progress in Supervised
Neural Networks”, IEEE Signal Processing
Magazine, Jan 1993.

[29] R. Beale and T. Jackson, Neural Computing:
An introduction, Dep. of computer science,
university of YORK, IOP Publishing LTD
1990.

[30] A. Adibi, A. Moosavienia, P. Moallem,
“Fast Neural Network Learning using a
Variable Learning Parameter Value”, 3rd
Iranian Con. on Electrical Engineering ,
1995.

[31] Amir Moosavienia, Karim
Mohammadi ,“An ABFT For FIR Systems
Using a Time Delay Neural Network”,
Proceeding of 4th International Wireless
and Telecommunications symposium ,
IWTS2000, P 244-248, May 2000.

[32] Andrew J. Viterbi and J. K. Omura,
Principles of Digital Communication and
Coding, Mc-Grawhill , 2-nd Print 1985.

 [33] Robert Grover Brown and Patrick Y.C.
Hwang, Introduction to Random Signal and
Applied Kalman Filtering, with MATLAB
excersixe and solutions,John Wieley &
Sons, 1997.

[34] Edward P. Cunningham, Digital Filtering:
An Introduction, John Wiley &Sons, 1995.

