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Nonlinear Modeling and Investigating the Nonlinear Effects 
on Frequency Response of Silicon Bulk-Mode Ring Resonator 
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Abstract: This paper presents a nonlinear analytical model for silicon micromechanical 
ring resonators with bulk-mode vibrations. A distributed element model has been developed 
to describe the dynamic behavior of the micromechanical ring resonator. This model shows 
the nonlinear effects in a silicon ring resonator focusing on the effect of large amplitudes 
around the resonance frequency, material and electrical nonlinearities. Through the 
combination of geometrical and material nonlinearities, closed-form expressions for third-
order nonlinearity in mechanical stiffness of bulk-mode ring resonators are obtained. Using 
the perturbation method and the method of harmonic balance, the expressions for 
describing the effect of nonlinearities on the resonance frequency and stability are derived. 
The results, which show the effect of varying the AC-drive voltage, initial gap spacing, 
DC-bias voltage and the quality factor on the frequency response and resonant frequencies, 
are discussed in detail. The nonlinear model introduces an appropriate method in the field 
of bulk-mode ring resonator design for achieving sufficient power handling and low 
motional resistance. 
 
Keywords: Micromechanical ring resonator, Nonlinearity, Bulk-mode, Frequency 
response, Power handling. 

 
 
 
1 Introduction1 
Development of micromechanical resonators and filters 
with high quality factor, high power handling capability 
and low motional resistance, is currently one of the 
interesting subjects in micro-communication 
applications [1]. The silicon micromechanical 
resonators due to their small size, low cost and 
compatibility with integrated circuit (IC) technology are 
a promising alternative to surface acoustic wave (SAW) 
and quartz crystal resonators. However, low motional 
resistance and high power handling make them difficult 
to handle with linearity and small size. And, due to their 
small size, these resonators cannot store high energy 
and, therefore, they should be driven at high excitation 
value which causes them to be easily driven into 
nonlinear regimes [2]. Moreover, the most direct 
methods for lowering the motional resistance in 
micromechanical resonators, like scaling down the 
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electrode to resonator gap and raising the DC-bias 
voltage, decrease the linearity [3]. The ability to 
accurately model nonlinearity and investigate its effect 
on frequency response is, therefore, a key requirement 
to optimum design of silicon micromechanical 
resonators. There are some mechanical and electrical 
nonlinearities in silicon micromechanical resonators. 
Depending on the resonator design and operating 
conditions, different nonlinearities may be dominant 
and result in hardening or softening behavior in the 
dynamic behavior of micromechanical resonator [4]. A 
lot of research has been conducted on modeling the 
nonlinear effects in micromechanical resonators. Gui et 
al. [5] investigated the nonlinear effects on the 
performance of a micro-bridge, using Rayleigh’s energy 
method, and showed the dependency of the hysteresis 
criterion on the quality factor, operating conditions, 
geometric and material properties of the 
micromechanical resonator. Mestrom et al. [4] studied 
the frequency responses and the nonlinear dynamic 
properties of clamped-clamped beam resonator and 
predicted the hardening behavior. They also compared 
their analytical results with the results from experiments 
and found a reasonable agreement. Alastalo et al. [6] 
presented a very useful study on the longitudinal mode 
resonators with respect to mechanical and electrical 
nonlinearity. Assuming a high quality factor, some of 
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the aforementioned works have ignored damping 
coefficient in calculating the shift resonance frequency 
caused by nonlinearities. Moreover, the study on the 
nonlinearities in bulk-mode micromechanical resonators 
is inadequate, and previous works have only focused on 
the longitudinal and square extensional mode resonators 
[7]. This paper deals with the effects of nonlinearities on 
frequency response of silicon bulk-mode ring 
resonators. First, a comprehensive nonlinear model of 
the resonator is derived. The model includes the effect 
of large amplitudes around the resonance frequency, 
material and electrical nonlinearities. Then, the effect of 
key parameters on nonlinear frequency response is 
evaluated applying perturbation techniques and 
harmonic balance method. Finally, the validity of the 
model is verified by comparison with the experimental 
data obtained by Xie et al. [8] in linear regime, and two 
analytical models presented by Zhang et al. [9] and 
Kaajakari et al. [10], [11] in nonlinear regime. 
 
2 Bulk-Mode Ring Resonator 

Among silicon micromechanical resonators, bulk-
mode ring resonators offer lower motional resistance 
and higher quality factor due to their high structural 
stiffness, ring geometry and having four quasi-nodal 
points at their outer periphery in some non-
axisymmetric bulk-modes like wine glass and 
extensional wine glass. Therefore, they are more 
extensively developed in RF transceiver front-end 
architectures [8]. 

In the bulk-mode ring resonators which are shown in 
Fig. 1, assuming that the width of the ring is much 
larger than its thickness (Ro-Ri >> t), the 2-D linear 
equations governing the vibration of a ring, without 
body force and internal heat source can be given by 
[12], [13]: 
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where E, υ, ρ and A are Young’s modulus, Poisson’s 
ratio, density of structural material and transduction area 
of the resonator, respectively. The displacement vector 
u=xer+weθ is defined in terms of the radial (x) and 
circumferential displacements (w) in polar coordinates 
through the time and mode shape functions as follows: 

( , ) ( ) cos( ), ( , ) ( ) sin( )r rx t X t n w t W t nθ θ θ θ= ⋅ = ⋅  (2) 
where 
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where at the natural resonance frequency of 
ωnm=hnm√(E/ρ(1-υ2), the radial displacement at inner and 
outer radius can be assumed as: 

( , ) ( ) cos( ), ( , ) ( ) cos( )o o i ix t X t n x t X t nθ θ θ θ= ⋅ = ⋅  (4) 
and approximately, 

( ) cos( ), ( ) cos( )o o i iX t U t X t U tω ω= =  (5) 
where, Uo=Ur=Ro and Ui=Ur=Ri can be expressed by 
following equation: 
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Fig. 1 The schematic views of the bulk-mode shapes of the 
ring resonator a) wine glass b) extensional wine glass. 
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Fig. 2 ANSYS simulation of EWG mode shape ring resonator. 
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In the above equations, Jn and Yn are Bessel 
functions of the first and second kind, respectively. hnm 
and knm are mode consonants of non-axisymmetric mode 
shape of (n,m), while knm is related to hnm by 
knm/hnm=√2/(1-υ). It should be noted that the relative 
constants of elastic waves (Bn/An, Cn/An, Bn/An) can be 
found by solving the equation of det(M4×4) =0. The 
element of M was explained in detail in Ref. [8], [14]. 

In the rest of the paper, the extensional wine glass 
(2,4) mode ring resonator with the specifications 
presented in Table 1 has been used to evaluate the 
frequency response caused by nonlinear effects. 
Therefore, the subscript nm is omitted and the subscript 
n=2 representing the second-order mode are used in the 
following equations. Fig. 2 presents the mode shape and 
resonance frequency of the extensional wine glass 
resonator using ANSYS software. 
 
3 Modeling Approach 

Since both actuation and capacitive detection of the 
ring resonator are realized using the inner and outer 
electrodes, it can be assumed as a two separate ring 
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resonators attached together at the radius of (Ri+Ro)/2 as 
shown in Fig. 3. Then, each ring resonator is modeled as 
a distributed element. Considering an infinitesimal 
element, the gap spacing variations in capacitive 
transducers are assumed along the radial direction. 

Thus, the governing equation of a second-order 
mechanical system (mass-spring-damper) for an 
infinitesimal element of the ring resonator can be 
expressed as: 
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where x represents the radial displacements of the 
effective lumped mass of m and b, km and kc are 
damping coefficient, mechanical stiffness and coupling 
stiffness, respectively. The subscripts i and o denote the 
inner and outer ring resonators, respectively. The 
effective masses for infinitesimal element in inner and 
outer resonators are given by: 
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Assuming that the first mode is the dominant mode 
of the system, the inner to outer displacement ratio can 
be expressed as: 
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Table 1 The related EWG mode parameters for silicon ring 
resonator. 

Parameter Value Unit 
Inner radius (Ri) 30.16 μm 
Outer radius (Ro) 50 μm 
Thickness (t) 2 μm 
Electrode angle (θe) 35 deg 
Resonance frequency (fnm) 220 MHz 
Linear Young’s modulus (E0) 170 GPa 
Poisson ratio (υ) 0.28  
Density (ρ) 2330 Kgm-3 
First-order corrections (E1) -2.6  
Second-order corrections (E2) -8.1  

 
Substituting Eqs. (4) and (10) into Eqs. (7) and (8), 

and combining them together results in the following 
expression: 
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Fig. 3 a) The schematic view of the infinitesimal element b) 
The equivalent mass-spring-damper system of the ring 
resonator. 
 
4 Modeling the Origins of the Nonlinearities 

Nonlinearities in micromechanical resonators 
generally arise from electrical and mechanical origins. 
The electrical nonlinearities include the electrostatic 
force nonlinearity caused by the variable gap capacitive 
transducers and the fringing effects. A large structural 
deformation can be contributed to geometrical and 
material nonlinearities; classified as mechanical 
nonlinearities. 
 

4.1   Electrical Nonlinearity 
In many micromechanical bulk-mode resonators, the 

initial gap spacing between electrodes and the resonator 
is not negligible as compared to the thickness of 
structure (small aspect ratio) and therefore, the fringing 
fields are considerable. Hence, the electrostatic force 
nonlinearity can be modeled using the parallel plate 
capacitor approximation along with the correction term 
of Cf representing fringing effects as follows: 
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(15) 

where C0o(θ)=εRot/d and Coi(θ)=εRit/d imply the 
capacitance over the outer and inner gaps when the 
outer and inner radial displacements are equal to zero, 
and d is the corresponding initial gap spacing. Based on 
the sense (or drive) electrodes configuration, the value 
of β would be equal to 1 or -1 as the sense (or drive) 
electrodes are placed at the same side or opposite side, 
respectively. The correction term of capacitances for the 
fringing effects depends on the dimensions of the 
structure as the following equation [15]: 
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where λ=d/t is the initial gap spacing to thickness ratio 
of the ring structure. 
 

4.2  Mechanical Nonlinearity 
Mechanical (material and geometrical) nonlinearities 

are created by the stresses developing inside the 
resonator structure under large displacements. 
Depending on the operation mode, the material or 
geometrical nonlinearities can be dominant in 
micromechanical resonators. Unlike the electrical 
nonlinearities, which can be easily represented by 
Taylor series with respect to displacement, the 
mechanical nonlinearities can be approximated by 
deformation analysis for the bulk-mode ring resonator. 
For this purpose, the mechanical nonlinearity is first 
modeled by considering the higher order terms to the 
mechanical stiffness as follows [10], [16]: 
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2
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In order to consider the geometrical nonlinearities, 

the geometrical deformation (Fig. 4) caused by large 
radial displacement in infinitesimal element can be as: 
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Moreover, the large displacement develops internal 
stresses inside the structure of resonator and therefore, 
nonlinear elastic behavior of silicon result in nonlinear 
Young’s modulus as follows [10]: 
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where E1 and E2 denote the first-order and second-order 
corrections to linear Young’s modulus of E0, 
respectively. The values of E1 and E2 are listed in Table 
1 for bulk-mode silicon oriented along <100> [16]. 
Substituting Eqs. (18) and (20) into Eq. (1), multiplying 
by cos(2θ), and then integrating both sides from θ=0 to 
2π results in the approximate expressions for third-order 
nonlinearity in mechanical stiffness, k2o and k2i, as: 
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Fig. 4 The geometrical variation in infinitesimal element of 
the ring resonator. 
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(23) 

In fact, the second-order nonlinearity term caused by 
symmetric structure of the ring and mode shape is 
omitted. Using the self-written numerical codes in 
MATLAB software, the values of k2o and k2i for the case 
study of this paper were calculated to be -2.842×10-11 
Nm-1 and -1.024×10-10 Nm-1, respectively. 
 
5 Analysis of the Nonlinear Effects 

Based on the electrostatic and mechanical 
nonlinearities and multiplying Eq. (11) by cos(2θ) and 
then integrating over the range of 0 to 2π, the governing 
equation of a second-order mechanical system of the 
micromechanical ring can be rewritten as: 
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The notations used in the above equation are 
presented in Table 2. 

Eq. (24) is called Duffing’s equation, where ωt, Q 
and θe are the resonance frequency caused by electrical 
nonlinearity, mechanical quality factor and electrode-to-
resonator overlap angle, respectively. The DC term in 
Eq. (24) has no effect on the nonlinear analysis of the 
frequency response and it can be ignored as follows: 

( )

2
0

2 3
1 2 3

( ) ( ) ( )

( ) ( ) ( )

t
o o t o

o o o

X t X t X t
Q

d X t X t X t

ω
ω α

α α α

′′ ′+ ⋅ + ⋅ =

+ + +
(25) 

where 

( )

2
0 1 1

3 2 3
2 3

( )
( ),

( )
,

i
i

i

g v t
g v t

d
g v t

d d

α α

α α

= =

− Ω −Ω
= =

 (26) 

The approximate analytic method can be used to 
solve the Eq. (25). Assuming weak nonlinearities, this 
problem can be solved by perturbation technique. This 
method assumes that the resonance frequency along 
with the solution varies as a function of perturbation 
terms and the solution is given by: 
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Table 2 Definitions used in the Eq. (24). 
 Definition 
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The second order approximation of this solution can 
be used to achieve a more exact evaluation as: 
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Substituting Eqs. (29) and (30) into Eq. (25) and 

grouping the terms in power of d, the two following 
expressions are obtained: 
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When the AC-drive voltage of vi(t)=|vi|cos(ωt) is 
applied, the solution of Xo0(t) would be as: 

( )
( )

0

j
1

1

( ) Re e ( )

cos( ) sin( )

t
o i

i

X t g v H

g v H t H t

ω

ω ω

ω

ω ω

= ⋅

′ ′′= −
 (33) 

where 

2 2

1( ) j
j t

t

H H H

Q

ω ωω
ωωω ω

′ ′′= = +′
′ − +

 (34) 

where H΄ω and H˝ω denote the real and imaginary parts 
of the transfer function of H(ω), respectively. 
Substituting Eq. (33) into the right hand side of Eq. (32) 
and setting the secular terms to zero, the expression of 
ω1 is approximately given by: 
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Thus, by substituting Eq. (35) into (30), the 
resonance frequency caused by mechanical and 
electrical nonlinearities, ώt, is expressed as follows: 
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As shown in the Eq. (36), ώt is a function of the 
amplitude of the first-order approximation of the 
solution. By Substituting Eq. (33) into (32), the solution 
of Xo1(t) is calculated and, therefore, Xo(t) can be 
expressed as follows: 
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where H΄nω and H˝nω (n= 2,3), denote the real and 
imaginary parts of the transfer function of H(nω), 
respectively. Substituting Eq. (37) into (5), the output 
current for infinitesimal element of micromechanical 
ring resonator can be expressed using the following 
equation as: 
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Multiplying by cos(2θ) and then integrating both 
sides, from 0 to 2π, the total output current due to the 
AC-drive voltage at the resonance frequency is finally 
derived as: 

1
( ) cos( )o oq q

q
i t i q tω ψ

∞

=

= +∑  (42) 

The experimental results of the study conducted by 
Xie et al. [8] were used to experimentally verify derived 
expression for presented model in linear regime and 
electrical stiffness. As shown in Fig. 5(a) and 5(b), the 
frequency response is measured using the mixing 
approach [8]. To adapt this approach to the proposed 
model, the equations of |vi|=(vLO|vRF|)/2 and 
Po=(RL|io|2)/2, (RL=50 Ω) [17] are used in the derived 
expressions. 

It can be seen from Figs. 5 and 6(a) that the 
frequency response and resonance frequency change of 
the nonlinear model agree well with experimental data. 
However, the low difference between their amplitude 
and resonance frequency may be due to the parasitic 
capacitance and resistance in experimental 
measurements. According to the expression of electrical 
stiffness, Ke, when DC-bias voltage (VP), increases or 
the initial gap spacing between the electrodes to 
resonator (d) decreases, the resonance frequency caused 
by electrical nonlinearity (ωt), shifts down as shown in 
Fig. 6(b). In order to address the nonlinear effects on the 
frequency response, assuming that the first mode is the 
dominant mode and using the first-order approximation, 
the solution is assumed as follows: 

( ) cos( )o oX t X tω=  (43) 
2 2

1o iX g v H Hω ω′ ′′= +  (44) 

Thus, the phase difference between the AC-drive 
voltage vi(t), and solution Xo(t), is maintained as the 
phase of applied voltage and is fixed as the phase of 
solution as follows: 

1 2( ) cos( ) cos( ) sin( )i iv t v t v t v tω ϕ ω ω= − = +  (45) 
 

Substituting Eqs. (28) and (29) into (25) and using 
the method of harmonic balance, the following 
equations are obtained: 

( )( )
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3 4 4
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X X X
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                  (46) 
Substituting Eq. (46) into v1

2+v2
2=vi

2, leads to the 
relation between the amplitude of AC-drive voltage and 
vibration amplitude as: 
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                  (47) 

To study the effects of drive voltage on the 
frequency response, the DC-bias voltage VP, is assumed 
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Fig. 5 The frequency response for polysilicon EWG mode ring 
resonators a) 220.8 MHz b) 435.8 MHz. 
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Fig. 6 The fractional resonance frequency change caused by 
electrical nonlinearity for a) Polysilicon EWG ring resonator 
with f0=220.8 MHz b) Silicon EWG mode ring resonator (as 
Table 1) 
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constant and the drive voltage varies. In Fig. 7(a), it is 
shown that as drive voltage (vi) increases, the resonator 
frequency response changes from an almost linear curve 
to a completely nonlinear one (hysteresis). In fact, 
higher drive voltage leads to larger vibrations and 
eventually results in a jump in frequency response. This 
behavior is evident when there are two amplitudes of 
vibration for a given forcing frequency at high drive 
voltage. Moreover, the peak frequency tilts to a lower 
frequency as the vibration amplitude increases and the 
ring resonator, therefore, exhibits a softening behavior. 

It can also be seen from Fig. 8 that an increase of the 
VP or a decrease in d, tilts the resonance peak more, and 
the softening behavior of the micromechanical ring 
resonator becomes more pronounced. Quality factor is a 
fundamental parameter to design of micromechanical 
resonators for MEMS-based filters with a low insertion 
loss. There exist several intrinsic and extrinsic energy-
loss mechanisms in the bulk-mode resonators like air 
damping, anchor loss and thermoelastic damping 
(TED); for a bulk-mode resonator operating in high 
vacuum, the air damping mechanism can be ignored. 
Also, in these resonators, the thermoelastic damping is 
negligible as compared to the anchor loss and therefore, 
anchor loss is the dominant energy-loss mechanism 
[18]. It is demonstrated that, anchor loss is strongly 
dependent on the support beam dimensions, and it can 
be reduced by mechanically isolating the support beams 
from the substrate and optimum designing of their 
dimensions [19], [20]. As shown in Fig. 9(a), the 
nonlinear effects on frequency response become more 
apparent by increasing quality factor. 
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Fig. 7 The effect of AC-drive voltage on frequency response 
for EWG ring resonator with Q=8000, d=90 nm , VP=100 V. 
 

(a) (b)

219.6 219.7 219.8 219.9
0

2

4

6

8

10
 d=80 nm
 d=90 nm
 d=100 nm
 d=110 nm

 

 

Frequency (MHz)

 

 

219.6 219.7 219.8
0

2

4

6

8

10
 VP=90 v
 VP=100v
 VP=110v
 VP=120v

 

 
X o

(x
10

-8
)

Frequency (MHz)

 

 

 
Fig. 8 The effects of DC-bias voltage and initial gap spacing 
variations on frequency response for EWG ring resonator with 
Q=8000 a) d=90 nm and vi=5 VPP b) VP=100 V and vi=5 VPP. 

(a) (b)

219.70 219.75 219.80
0

3

6

 Q=6000
 Q=8000
 Q=10000
 Q=12000

 

 

 

Frequency (MHz)

Xc=51.6 nm

Xc=45.3 nmXc=40.8

Xc=37.7 nm

219.70 219.75 219.80
0

3

6

9

X o
(x

 1
0-8

)

 

Frequency (MHz)

 Q=6000
 Q=8000
 Q=10000
 Q=12000

 
Fig. 9 The effect of Q-factor on a) Frequency response for 
EWG ring resonator with vi=4 VPP, d=90 nm and VP=100 V b) 
Critical vibration amplitude (XC) of a EWG ring resonator 
with d=90 nm and VP=100 V. 
 

The greatest vibration amplitude before hysteresis, 
called the critical vibration amplitude, Xc, can be used to 
estimate the limit for power handling as given by 
Ec=(Km0Xc

2)/2 [10]. Where Ec is the maximum stable 
energy stored in the resonator. In Fig. 9(b), it is shown 
that under the same conditions, a higher quality factor 
decreases the critical vibration amplitude and therefore, 
lowers maximum stable energy stored. 

To verify the presented model, the results of 
nonlinear behavior of the ring resonator were compared 
with two analytical models. Zhang et al. [9] used a 
method of two-variable expansion to analyze the 
Duffing’s equation when the driving frequency is close 
to the resonance frequency of ωt. Moreover, they 
proposed an effective third-order stiffness (K2eff) as a 
nonlinear parameter, which the transition of this 
parameter from positive to negative will change the left 
hand side bifurcation to right hand side bifurcation of 
the resonator frequency response. According to the two-
variable expansion method, the effective third-order 
stiffness was obtained for micromechanical ring 
resonator as follows: 
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where, ξ can be calculated by numerically solution of 
Eqs. (51) and (52): 
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As shown in Eq. (48), Λm and Λe denote the 
nonlinear parameters due to third-order mechanical and 
electrical nonlinearity respectively. From Fig. 10, it is 
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found that, the sign of K2eff is fixed for different value of 
DC-bias voltage. This is different from flexural-mode 
resonators, where exhibit hardening behavior and the 
sign of K2eff can be changed with DC-bias voltage. 

Kaajakari et al. [10], [11] used a method of 
successive approximations to obtain a solution to 
Duffing’s equation assuming the micromechanical 
resonator with high quality factor. However, some 
effects of electrostatic force on Duffing’s equation were 
not taken into account. 
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Fig. 10 The nonlinear parameters versus DC-bias voltage for 
EWG ring resonator with Q=8000, d=90 nm and vi=5 VPP. 
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Fig. 11 The comparison between the result of analytical 
methods for EWG ring resonator with Q=8000, d=90 nm a) 
vi=5 VPP (dash line) and vi=6 VPP (solid line) with VP=100 V 
b) VP=110 V (dash line), VP=120 V (solid line) with vi=5 VPP. 
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Fig. 12 The comparison between the result of analytical 
methods for EWG ring resonator with VP=100 V a) Effect of 
initial gap spacing, d=90 nm (dash line) and d=80 nm (solid 
line) with Q=8000 and vi=5 VPP b) Effects of quality factor 
with d=90 nm. 

As shown in Figs. 11 and 12, the analytical results of 
the paper are in good agreement with the results from 
successive approximations method. However, in two-
variable expansion method, the resonance frequency 
shifts down less than other methods with increasing DC-
bias voltage and decreasing initial gap spacing. 
Moreover, the results from the analytical models 
indicate that the ring resonator exhibit softening 
behavior in nonlinear regime. 
 
6 Conclusion 

This paper deals with the nonlinear modeling of 
silicon micromechanical ring resonators with 
electrostatic actuation and detection on both inner and 
outer radius. The origins of nonlinearities in the 
micromechanical resonators were completely modeled 
as a distributed element using Taylor series and 
deformation analysis. Based on the derived expressions 
for third-order nonlinearities in mechanical and 
electrical stiffness, the expression of the resonance 
frequency was obtained using the perturbation method. 
The nonlinear effects on frequency response were 
addressed in details and the results of the paper were 
compared with two analytical models, as well. It was 
shown that the micromechanical ring resonator exhibits 
the softening behavior. Moreover, there is a trade-off 
between the conventional methods to reduce motional 
resistance and stability of the frequency response in 
micromechanical ring resonators. While the DC-bias 
voltage is increased or the initial gap spacing is 
decreased, the ring resonator becomes more susceptible 
to nonlinear effects. In addition, increasing the resonator 
quality factor was shown to tilt the peak frequency 
toward lower frequencies and decrease the maximum 
energy stored. The presented model and the results of 
this paper allow designers to optimize the design of 
micromechanical ring resonators and improve the 
performance of MEMS-based filters and oscillators. 
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