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Reduced order model for doubly output induction 
generator in wind park using integral manifold theory 
 
M. Kalantar and M. Sedighizadeh 
 

Abstract: A dynamic reduced order model using integral manifold theory has been derived, 
which can be used to simulate the DOIG wind turbine using a double-winding 
representation of the generator rotor. The model is suitable for use in transient stability 
programs that can be used to investigate large power systems. The behavior of a wind farm 
and the network under various system disturbances was studied using this dynamic model. 
Simulation results of the proposed method represents that integral manifold method results 
fit the detailed model results with a higher precision than other methods. 
 
Keywords: doubly output induction generator, wind park, reduced order model, integral 
manifold theory. 

 
 
1 Intoduction1 

The production of a significant amount of power 
from the wind has required both the development of 
larger more efficient and reliable wind turbines and the 
use of more than one machine at each site constituting 
the poupular wind farms. Currently, the most used 
configuration of wind parks consists of a set of wind 
turbines each one driving a double output induction 
generator (DOIG) or synchronus machine [1] , which , 
in turn , are assembled in group(s) and directly coupled 
to the exisiting a.c. system. 

In order to give a net contribution to solve the 
problems that are still pending , namely in what 
concerns the impact of the integration of wind parks in 
the utility distribution system, some computational tools 
have been developed with the aim of assisting both 
wind park and distribution system planners and 
designers. These computational tools are based on 
models that are able to accurately simulate the behavior 
of wind parks under transient situations. 

The paper is concerned with the development and 
application of wind parks reduced order models that are 
able to simulate relevant dynamics of the park with 
respect to the utility system, henceforth denoted by 
wind park reduced order models. 
Operation of DOIG is extensively treated in literature, 
and various models for different applications have been 
obtained [2]–[8] and reduced order models of DOIG 
wind turbines for dynamic studies have been published 
[9]-[14]. 

Firstly, a wind park detailed model consists of a set 
of wind turbines each one driving a double output 
induction generator (DOIG)will be presented. Then, 
integral manifolds technique will be applied to the 
model in order to achieve a reduced order model which 
describe with a resonable degree of accuray the transient 
behavior of the wind park in what concerns the 
interaction with the grid. 
 
2 Wind park full order model 

Detailed models previously developed for each 
component of the system have been conveniently 
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adapted and linked together in order to form an 
integrated wind park detailed model.The different 
elements modeled, namely, wind turbine, DOIG, 
reactive power compensation system, transformers, 
interconnection feeder and possible local loads 
connected to the feeder, are shown in figure 1. 

In this paragraph, the equations describing the 
subsystems of a variable  speed wind turbine  with 
DOIG and converter (rectifier+inverter) as depicted in 
figure 2 will be developed. The equations for the rotor, 
the generator and the converter will be given here. The 
equations have been developed using the following 
assumptions: 
• All rotating mass is represented by one element. The 

so-called ‘lumped-mass’ representation. Elastic 
shafts and resulting torsional forces are neglected. 

• A quasi static approach is used for the description of 
aerodynamic part of the wind tuebine. 

• Magnetic saturation in the DOIG is neglected. 
• Dynamic phenomena in the converter are neglected. 

These assumptions reduce the complexity of the 
modelling task and the amount of system data is needed. 
As reliable data are often hard to obtain, this is 
considered an important advantage. Furthermore, under 
these assumptions the computation speed can be 
increased, which is also considered an advantage, 
particulary  when large systems are to be simulated. 
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Fig. 1 System studied 
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Fig. 2 Shematic representation of DOIG 
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A. wind turbine models 
The rotor converts the energy contained by the wind 

into mechanical energy. The following well known 
equation between wind speed and power extracted from 
the wind holds [12]. 

rWm

3
WRPW

/pT

VA),(C
2

P

ω=
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ρ

=  (1) 

With WP  the power extracted from the air flow[w], ρ  
the air density[kg/m3] و PC  the perfomance cofficient or 
power cofficient, λ  the tip speed ratio Wt V/V , the ratio 
between blade tip speed tV  and wind speed upstream 
the rotor WV [m/s], θ  the pitch angle of rotor 
blades[deg], RA the area covered by the rotor [m2], and 

rω the rotor speed[rad/sec]. 
The performance cofficient PC  that is a function of the 
tip speed ratio λ and pitch angle θ will be investigated 
further.The calculation of the performance cofficient 
requires the use of blade element theory. As this 
requires knowledge of aerodynamics and the 
computations are rather complicated, numerical 
approximations have been developed. 
 

B. DOIG  model with double-winding rotor 
The DOIG model with double-winding rotor is 

generally represented by the seventh order differential 
equations of flux linkages and speed. The flux linkages 
are represented  in the d-q axis reference frame which 
revolves at synchronous speed, (see nomenclature for 
notations not defined in the appendix). In these 
equations,v and i are in per unit, but time remains in 
seconds. The subscripts 1,2 and 3 refer to the stator 
winding, first winding rotor , and second winding rotor, 
respectively. In a wind farm that have a number n of  
DOIGs, for a DOIG with double-winding rotor is given  
the following set of complex differential and algebric 
equations. If suppose 33 r/l=τ ,Thus, 
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The model is developed based on the assumptions 
that it is possible to decompose the total flux linking 
each winding into leakage and magnetisation 
components, and that it is possible to characterise the 
machine through a unique magnetisation characteristic. 
 

C. Swing equation 
For each unit i, the rotor slip S may be evaluated 

using the swing equation : 

)TT)(H2/(s em −ω−=•  (3) 

 
3 Reduction-order preliminary analysis 

In a first step, some of the methodologies currently 
available to reduce the order of power systems models 
have been applied to the specific case of wind parks. 
With the aim of gaining some insight regarding the 
behavior of each technique, a steady–state preliminary 

analysis has been carried out, using linearized models in 
order to take advantage of its inherent simplicity[15]. 

Modal truncation is one first reduction schemes that 
has been applied to electric power systems[16]. This 
technique is based on the pole location of the system. 
The state variables are transformed in modal variables 
and the fast decay poles and/or those associated with 
high frequencies are neglected, thus enabling a 
reduction in the order of the system . 

Balanced reduction techniques take a slightly 
different approach, because they are based in the 
input/output behavior of the system [17]. Actually, the 
original state-space system is transformed into a new 
representation  that has the property that each state-
space variable is both controllable and observable. In 
order to achieve a reduced order model, states that are 
strongly influenced by the inputs and storngly 
connected to the outputs are retained, whereas states 
that are weakly controllable and observable are 
truncated. 

Another method used in power systems order 
reduction is the so called optimal Hankel–norm 
approximation [18]. This criterion tries achieve a 
compromise between a small worst case error and a 
small energy error. 

Another technique used in power system as singular 
perturbations decomposes the system according to its 
fast and slow dynamics and then lowers the model order  
by first neglecting the fast dynamics phenomena [19]. 
The effect of fast dynamics are then reintroduced as 
boundary layer correction calculated  in separated time 
scales, which leads to correct static gains. 

This paper employs the manifold concept as a tool 
for reduced order modeling and decomposition of wind 
park[20,21,22,23]. Theory of integral manifolds  has 
accurecy over singular perturbation, because nonlinear 
methods can be classified into two groups: geometric 
and asymptotic. Among the concepts common to both 
groups of methods is the concept of integral or invariant 
manifolds, a nonlinear  generalization of the notion of 
invariant subspace in linear systems and reduced order 
modeling is treated with a combination of geometric 
concepts and asymptotic techniques of singular 
perturbations. 
 
4 Integral manifolds background[23]. 

A smooth s-dimensional surface S in the n-
dimensional space nR is defined by m=n-s independent 
algebraic or transcendental scalar equations. In their 
simplest form, these equations express certain m 
coordinates z as m explicit functions of the remaining s 
coordinates x, that is they define S by its graph: 

S : z=h (x) , z∈Rm ; x∈Rs ; m+s=n (4) 

It is assumed that, for all x in a domain of practical 
interest, ∂h/∂x exists and has full rank m. For 
approximated constructions of h(x) pursued in this 
paper it will also be assumed that higher order 
derivatives of h(x) exist and are continuous. In a more 
general situation the surface S may vary with time t, 
then  

St: z=h(x,t)    , z∈Rm ; x∈Rs ; m+s=n (5) 

It will be assumed that ∂h/∂t exists and is continuous 
over an interval of interest t∈(t0,t1), preferably infinite:  

∞→1t  
Let us now use the same coordinates z and x to describe 
a dynamic system Dt in Rn: 
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mRz.),........t,z,x(gz ∈=•  (6) 

nsm,Rz.),........t,z,x(fx s =+∈=•  (7) 

Where appropriate differentiability assumptions are 
made about g and f. The surface St, and the system Dt 
have thus been introduced as two entities unrelated to 
each other. In this paper we explore a particulary useful 
relationship of st and Dt, when St is an integral manifold 
of Dt. The term invariant manifold will be used when 
such an integral manifold is time-invariant, that is when 
∂h/∂t = 0 and St=S as in (4). 
 
Manifold Definition: Surface St is an integral manifold 
of Dt if every solution z(t), x(t), of (6) – (7) which is in 
St at t=t0. 

Z(t0)= h(x(t0) , t0) (8) 

Remains in St for all t∈ (t0, t1), that is 

z(t) = h (x(t) , t) , t∈(t0, t1) (9) 

This definition furnishes a condition which can be used 
to verify whether h(x,t) in (5) defines an integral 
manifold of (6)-(7). 
 
Manifold condition: If h (x,t) satisfies the partial 
differntial equation: 

)t)t,x(h,x(g)t),t,x(h,x(f
x
h

t
h

=
∂
∂

+
∂
∂  (10) 

the surface St given by (5) is an integral manifold of the 
dynamic system (6)-(7). 
This condition is simply obtained by differentiting (9) 
with respect to t: 

••

∂
∂

+
∂
∂

=ε x
x
h

t
hz  (11) 

and then substituting •x  and •z from (6) to (7). Once 
the existence of an integral manifold St of Dt has been 
established and its defining function h(x,t) has been 
found , then the restriction of Dt to the manifold St is 
given by the s th-order system 

),t),t,x(h,x(fx =•  sRx ∈  (12) 

which is obtained by the substation of z=h(x,t) into (7).  
In addition to being a tool for reduced order 

modeling, the concept of an integral manifold is also a 
decomposition tool. A reduced order model (12) is a 
correct description of the dynamic Dt only when the 
intial state is in St, as in (8). When the initial state of Dt 
is not in St, the knowledge of the manifold function 
h(x,t) continues to be useful by allowing us to replace 
the z-coordinates by the “ off-manifold” coordinates η. 

η= z-h(x,t)  η∈Rm (13) 

In terms of the new coordinates η and x the original 
system (6) –(7) becomes: 

x
h)t),t,x(h,x(f

x
h)t),t,x(h,x(g

∂
∂

−+η
∂
∂

−+η=η•  (14) 

)t),t,x(h,x(fx =•  (15) 

An advantage of this full order description of Dt over (6) 
–(7) is that now the manifold condition is simply η=0. 

The decomposition is achieved in the sense that on the 
surface St the subsystem (14) is at an equilibrium: 
η(t0)=o implies η(t)=0 for all t∈(t0,t1)and all x. The  off 
–manifold and in –manifold description (14) –(15) is 
particularly helpful when the in-manifold behavior of Dt 
is of primary interest and the off-manifold variable is 
evaluated separately as a correction term. The analysis 
presented in the subsequent sections illustrates both 
conceptual and computational advantages of this 
nonlinear decomposition approach. 
 
5 Application to the wind park model 

The integral manifolds theory outlined in the 
previous section was applied to the case of the wind 
park detailed model. 

The first step consists in the separation of the time 
variables in slow variables and fast varibles , in order to 
be able to solve them in the approprinate time scales. 
The variables stator flux linkage, 1ϕ , first rotor circuit 
flux linkage, 2ϕ ,and speed rotor were considered as 
slow variables , the remaining ones (variables second 
rotor circuit flux linkage, 3ϕ ) were assumed as fast 
variable , thus:  

]s............[x q2d2q1d1 ϕϕφϕ=  (16) 

]...[z q3d3 ϕϕ=  (17) 

To produce a fifth order model for DOIG it is 
necessery to eliminate •ϕ d3  and •ϕ q3 from equations (2). 
This can be done by finding relations for d3ϕ  and q3ϕ as 
a function of s,,,, q2d2q1d1 ϕϕϕϕ . If 3τ is zero, such 
relationships can be obtained by equating the 

•ϕτ d33 and •ϕτ q33 with zero. When 3τ is non zero but small, 
We let ε=τ3 and search for the unknown functions: 

),s,,,,(h q2d2q1d1d3 εϕϕϕϕ=ϕ  (18) 

),s,,,,(p q2d2q1d1q3 εϕϕϕϕ=ϕ  (19) 

Using two power series in ε about 0=ε , namely, 
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2
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..pppp 2
2

10 +ε+ε+=  (21) 

To find the terms ,...h,h 10 and ,...p,p 10 of the series, 
we use the fact the functions h  and p must satisfy(11). 
In view of (18) and (19), these give,  
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Which are partial defferential equations that must be 
satisfied by the series(20) and(21) as identities for all ε  
near zero. With using (2), (18)-(21) and subsituating 
into (22) and(23), we obtain expersions in terms of 

,...,, 210 εεε  . 
Equating coefficients of ε  gives the identities to be 
satisfied by each ih and ip . For 0h and 0p we equate all 
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the terms not containing ε giving,  
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where  
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' ω=  (26) 

Which is the same as obtained by setting 03 =τ=ε  in 
(2). 
Equating coefficients of 1ε  gives 
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This process can be continued to obtain higher order 
terms if desired. Stopping with two terms, the 
approximate manifold experssions (20) and (21) are, 

10d3 hhh ε+==ϕ  (29) 

10q3 ppp ε+==ϕ  (30) 

If intial conditions for sqdqd ,,,, 2211 ϕϕϕϕ satisfy manifold 
functions, thus: 

))0(s),0(),0(),0(,)0((h)0( q2d2q1d1d3 ϕϕϕϕ=ϕ  (31) 

))0(s),0(),0(),0(,)0((p)0( q2d2q1d1q3 ϕϕϕϕ=ϕ  (32) 

Thus, (29) and (30) are exact solutions for q3d3 , •• ϕϕ  and 
with subsituating (29) and (30) into 

q2d2q1d1 ,,, •••• ϕϕϕϕ and •s in (2) a reduced order model 
fifth order is obtained. 
But if intial conditions don’t meet manifold conditions, 
we seek two expression for the deviation introduced the 
initial condition in the second winding by finding, 

hd3d −ϕ=η  (33) 

pq3q −ϕ=η  (34) 

where dη and qη are off-manifolds variables. 
 The differential equation describing this variables can 
be found from the original equations as,  

dt
dh
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d q3q ε−

ϕ
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η
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Where 3τ=ε  as before. 
Substituting for d3

•εϕ  and q3
•εϕ  from (2) and (33)-(34) 

and neglecting 2ε (consistent with the previous of the 
manifold series), The equations to be solved are, 
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q3q
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−ϕ=η
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 (39) 

These off-manifold dynamics normally are difficult 
to compute because they require s,,,, q2d2q1d1 ϕϕϕϕ . As a 
approximation, (37) and (38) could be solved using 

sqdqd ,,,, 2211 ϕϕϕϕ  as constants equal to its initial 
conditions.      This is a reasonably good approximation 
because the off manifold dynamics should decay (if they 
are stable) before s,,,, q2d2q1d1 ϕϕϕϕ change significantly. 
 
6 Linearized model 

Each of the two nonlinear models full order and fifth 
order can be linearized around an operating point if it is 
assume that the variables have sufficiently small 
deviations from the operating point. For example this 
assumption is made in dynamic stability studies of 
power systems where it is customary to use a linearzied 
model so that linear system analysis methods can be 
conveniently applied. 

The linearization process could be directly applied to 
the fifth order machine model. However, the 
coefficients of the resulting equations, particularly for 
the fifth-order model, would have rather complicated 
algebraic expressions. An equivalent approach is 
through linearizing the complete seventh order model 
and then numerically deriving the linearized fifth model 
by following process. Let the linearized seventh-order 
equation be partitioned as  

CxDzz +=•  (40) 

uAxBzx ++=•  (41) 

Where z represents the variable whose transients are to 
be ignored and x dentoes the remaining variables. 
Thus, for the fifth-order model, z represents the second 
case flux linkage. For a linear time–invariant system 
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with constant input, u , the integral manifold is sought in 
the from 

)u(qpxz +=  (42) 

The substitution in to (40) and (41) yeilds: 

Cx))u(qpx(D)u)u(qpx(BAx(p ++=+++  (43) 

Collecting the x-dependent terms we require that the 
constant matrix p be a solution of  

0CpBpDppA =−+−  (44) 

With such a p, the u-dependent terms require that  

0pu)u(q)pBD( =−−  (45) 

which provided 1)( −− pBD exists, is satisfies by  

pu)pBD()u(q 1−−=  (46) 

The description of the system (40) and (41) restricted to 
the manifold (42) is given by the reduced order model: 

u)Ip)pBD(B(x)pBA(x 1 +−++= −•  (47) 

If initial conditions for x and z satisfies in (42), thus, 
reduced order model is (47), But if intial conditions 
don’t meet manifold conditins, we seek two expression 
similar to nonlinear model. 
The accuracy of the linearized reduced–order moder can 
be verified by comparing the sets of eigenvalues with 
that of the linearized full-order model at the operating 
point since the set of eigenvalues of a linear time –
invariant system generally characterizes the system 
transient behavior. Comparison of the sets of 
eigenvalues as listed in table 1. 
 
Table 1 Eigenvalues associated with stator windung, first and 
second rotor winding. 

Variable 
Associated with 

Eigen values 
Ful order 

Fifth order 
order(integral 

manifold) 

Fifth order 
order(singular 
perturbation) 

Speed -6.912 -6.951 -7.18 
Stator winding 

flux linkage 
-12.94+j311.74 
-12.94-j311.74 

-11.34+j312.54 
-11.34-j312.54 

-10+j313.76 
-10-j313.76 

First winding 
flux linkage 

-6.62+j5.84 
-6.62-j5.84 

-6.52+j5.98 
-6.52-j5.98 

-6.412+j6.01 
-6.412-j6.01 

Second winding 
flux linkage 

-317.1+j0.902 
-317.1-j0.902 

……….. …………. 

 
7 Validation results 

In order to evaluate the performance of the integral 
manifolds reduced order model , that defined by the first 
four equations of (2), and equations (3), (29) and (30) in 
describing the wind park transient behavior, some 
simulations have been carried on and the results 
compared with singular perturbatins reduced order 
model[19] and full order non-linear detailed model. 

The relevant variables are generally the 
instantaneous stator current, electromagnetic torque, and 
the speed for transient behavior. 

The first selected case study  targets the simulation 
of a fault in the a.c. system which causes the voltage dip 
in generator terminal at 50 msec and normal operation 
occurring 500 msec after. The second choosed case 
study the simulation of a disturbance in wind power 
input which generates the mechanical torque decrease 
50% at 50 msec and normal performance arising 500 
msec after. It has been assumed a three units wind park 

subject to correlated wind input. 
Figures (3) and (4) display the rotor speed, stator 

current, and electromagnetic torque for a given 
generator, using both the full detailed model and the 
slow sub-system derived from the application of the 
integral manifolds method. 

The linearized fifth order model response to the 
some fault condition with a voltage dip of 40% was also 
obtained and displayed along with the response of the 
non linearized fifth order in figure (5). Finally the 
linearized ad non linearized fifth order model model 
simulation were repeated but now with a voltage dip of 
15% and responses plotted in figure. (6). The model 
parameters used for the simulation were listed in table 2 
and table 3. 
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Fig. 3a. DOIG no. 2 rotor speed response to temporary  three 
phase fault (1) detailed model, ( 2)sigular perturbation model, 
(3) integral manifolds model. 
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Fig. 3b. DOIG no. 2 stator current  response to temporary  
three phase fault (1) detailed model, ( 2)sigular perturbation 
model, (3) integral manifolds model. 
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Fig. 3c. DOIG no. 2 Electromagnetic Torque  response to 
temporary  three phase fault (1) detailed model, ( 2)sigular 
perturbation model, (3) integral manifolds model 
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Fig. 4a. DOIG no. 2 rotor speed response to temporary 50% 
mechanical torque decrease (1) detailed model, ( 2)sigular 
perturbation model, (3) integral manifolds model. 
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Fig. 4b. DOIG no. 2 Stator current response to temporary 
50% mechanical torque decrease (1) detailed model, ( 
2)sigular perturbation model, (3) integral manifolds model. 
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Fig. 4c DOIG no. 2 Electromagnetic Torque response to 
temporary 50% mechanical torque decrease (1) detailed 
model, (2)sigular perturbation model, (3) integral manifolds 
model. 
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Fig. 5a DOIG no. 2 rotor speed response to temporary 40% 
voltage dip , (1)non linear fifth order model, ( 2)linear sigular 
perturbation model, (3)linear integral manifolds model. 
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Fig. 5b DOIG no. 2 Stator current response to temporary 40% 
voltage dip , (1)non linear fifth order model, ( 2)linear sigular 
perturbation model, (3)linear integral manifolds model 
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Fig. 5c DOIG no. 2 Electromagnetic Torque response to 
temporary 40% voltage dip , (1)non linear fifth order model, 
(2)linear sigular perturbation model, (3)linear integral 
manifolds model. 

 
Fig. 6a DOIG no. 2 rotor speed response to temporary 15% 
voltage dip , (1)non linear fifth order model, ( 2)linear sigular 
perturbation model, (3)linear integral manifolds model. 
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Fig. 6b DOIG no. 2 Stator current response to temporary 15% 
voltage dip , (1)non linear fifth order model, ( 2)linear sigular 
perturbation model, (3)linear integral manifolds model. 
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Fig. 6c DOIG no. 2 Electromagnetic Torque response to 
temporary 15% voltage dip , (1)non linear fifth order model, 
(2)linear sigular perturbation model, (3)linear integral 
manifolds model. 
 
8 Conclusions 

This paper presents an application of integral 
manifolds theory to reduce the order of a detailed wind 
park model. The final aim of this task is to obtain a 
dynamic equivalent of the wind park that retains the 
relevant dynamics of the park with respect to the utility 
grid. 

The results achieved allow the conclusion that 
integral manifolds method is an excellent tool to derive 
dynamic equivalents of wind parks. The reduced order 
model reproduces with a high degree of accuracy the 
transient behavior results provided by the full order 
model. 

From figures(5) and(6), it is evident that the 
linearized model is only accurate in a suffieciently small 
region around the operating point. 

Moreover, the computing time issue is satisfactory 
addressed. The slow and fast dynamics are analyzed in 
separated time scales, which allows the use of different 
time steps for the integration of the two sub-systems. 
Computing time for integral manifold method and 
singular perturbation method are in turn 50% and 62% 
of computing time detailed model. 
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Appendix 
 

A. Nomenclature 
−l,l m magnetizing inductance and dynamic inductance 

−,r  resistance  
−ϕ,i,v  instantaneous values of voltages,currents and 

flux linkages  
−ωr angular velocitie of  rotor(electrical) 

−H inertia coefficient  
−em T,T mechanical torque and machine torque 

−s slip 
−ω stator angular frequency 

1,2,3- subscripts for stator winding ,rotor first and 
second winding  
 
 

B. Model parameters(stator circuit) 
 
Table 2 Charactristics of DOIG used in calculations 

DOIG Charactristic value 
Number of  poles 4 
Base Frequency 50 Hz 

Stator resistance( 1r ) 0.01  pu 
Stator leakage inductance( 1l ) 3.47*e-4  pu 
First winding resistance( 2r ) .01  pu 

First winding leakage inductance( 2l ) 3.58*e-4  pu 
Second winding resistance( 3r ) 1.36*e-1  pu 

Second winding leakage inductance( 3l ) 2.63*e-3  pu 
Magnetizing inductance( mL ) 3   pu 

Total  moment of  inertia  5.9*e6  kgm2 

 
Table 3 Charactristics of wind turbine used in calculations 

Wind turbine Charactristic value 
Rotor diameter 75 m 

Area covered by rotor 4418 m2 
Rotor speed 9-21 rpm 

Nominal power 2 MW 
Nominal wind speed 12 m/s 

Gear box ratio 1 :100 
 

C. Auxliary equations 
 
The inductance matrix l in 

li=ϕ  (c-1) 

is writen as 

.
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So that 

ϕ= −1Li  (c-3) 

with 
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