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Islanding Detection of Synchronous Machine-Based DGs using 
Average Frequency Based Index 
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Abstract: Identification of intentional and unintentional islanding situations of Dispersed 
Generators (DGs) is one of the most important protection concerns in power systems. 
Considering safety and reliability problems of distribution networks, an exact diagnosis 
index is required to discriminate the loss of the main network from the existing parallel 
operation. Hence, this paper introduces a new islanding detection method for synchronous 
machine–based DGs. This method uses the average value of the generator frequency to 
calculate a new detection index. The proposed method is an effective supplement of the 
Over/Under Frequency Protection (OFP/UFP) system. The analytical equations and 
simulation results are used to assess the performance of the proposed method under various 
scenarios such as different types of faults, load changes and capacitor bank switching. To 
show the effectiveness of the proposed method, it is compared with the performance of 
both ROCOF and ROCOFOP methods. 
 
Keywords: Islanding detection, Non-detection zone, Passive methods, Synchronous 
machine-based Distributed Generation (DG). 

 
 
 
1 Introduction1 
Nowadays, DG has been broadly used in distribution 
power systems. It can supply electricity secure to 
customers, be active in a deregulation of the electricity 
market, increase the reliability and decrease 
environmental concerns [1, 2]. The islanding 
identification for the connection of distributed 
generators to distribution networks is an important 
issue. According to IEEE standard 1547-2003, the 
islanding condition is defined as a situation in which a 
part of an electric power system is solely energized and 
separated from the rest of the system [3]. Failure to 
islanding detection can lead to several negative impacts 
to the generators and connected loads, as follows [4, 5]: 

1. The islanded grid cannot control its frequency 
and voltage. This earns result in equipment 
damages. 

2. This condition may cause safety hazards to utility 
workers and customers. 

Therefore, the islanding situation must be detected 
as soon as possible. Many islanding detection methods 
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have been proposed, which can be classified into two 
main categories. Remote methods, such as power line 
communication [6] and supervisory control and data 
acquisition [7] methods. They do not have Non-
Detection Zone (NDZ) and are more reliable than the 
local methods but more expensive. NDZs are defined as 
a loading condition for which an islanding detection 
method would fail to operate in a timely manner [8]. 

The local methods can be classified into two major 
groups: active and passive methods. According to the 
active methods, islanding is detected based on adding a 
perturbation signal into the system. The perturbation 
signals in parallel operation have no significant effect; 
but in the case of the loss of main grid, these signals are 
detected. Some of active methods, which have been 
recently introduced, include positive feedback for active 
and reactive power loops in governor and excitation 
system of synchronous DGs [9], injection a negative 
sequence of current through the interface Voltage-
Sourced Converter (VSC) [10], Sandia frequency and 
voltage shift methods [11] and harmonic amplification 
factor, which is based on the voltage change at the Point 
of Common Coupling (PCC) [4]. 

Passive methods are based on measuring local 
parameters of DG and comparing it with preset value. 
Passive methods, which have been proposed, include 
Over/Under Frequency/Voltage Protections (OFP/UFP 
and OVP/UVP) and rate of change of frequency over 
the time [12-14]. Vector surge relay is the other 
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2) Loss of Main Grid: 
In this mode, the response of the frequency to a loss 

of main grid is determined.  In the islanding situation, 
the transmitted power between DG and main network 
reaches to zero (see Fig. 1). It means that the 
synchronizing coefficient )cos(max δΔP  must be equal to 
zero. Therefore, in Eq. (2), we have: 

02
2

2

=
Δ

+
Δ

dt
dD

dt
dH

b

δδ
ω

                                                   (9) 

By solving Eq. (9) with HP b 2/)0( ωδ Δ=Δ  and 
DP /2)0( Δ=Δ πω  as initial conditions, the following 

response for frequency deviations can be obtained: 

( )tne
D
Ptf ςω21)( −−

Δ
=Δ                                        (10) 

Here, ΔP is the active power imbalance. By 
comparing Eq. (4) and Eq. (10), it can be seen that 
frequency deviations in grid-connected and islanded 
modes are different. When the real power mismatches 
(ΔP) causes transients in the islanded portion, the 
frequency of DG increases or decreases. Therefore, the 
aforementioned frequency deviations can be used to 
detect the islanding condition. 
 

2.2   Fundamentals of Proposed Method 
In this section, the average value of the frequency 

(i.e., Δfmean) is determined and a new detection index is 
introduced. The average value of the frequency 
deviation is written, as follows: 

∫ Δ=Δ dT

d
mean dttf

T
f

0
).(1
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where, Td is the fundamental period of the frequency 
deviation determined by Eq. (7), as follows: 
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Now, Eq. (11) should be calculated for both operation 
modes. 

a) For grid-connected mode, by Eq. (4) and Eq. (11), 
the frequency deviation will be determined, as 
follows: 
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Using Eq. (7), the simpler form can be obtained, as 
follows: 
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where, Δδ0 is the initial rotor angle deviation which can 
be created in different disturbances of the power 
systems. 

b) For islanding condition, by Eq. (10) and Eq. (11), 
the frequency deviation will be calculated, as 
follows: 
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To analyze the performance of the proposed method 
and assessment of its Non–Detection Zone (NDZ), the 
critical power imbalance of the method must be 
calculated. The critical power imbalance is the 
minimum power deviation which one islanding 
detection method can discriminate between two 
operation modes using it. The mentioned power 
deviation is described as a difference between produced 
and absorbed electrical power by DGs and loads, 
respectively. 

The critical power imbalance of the proposed 
method is determined by the following inequality: 

1>
Δ
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Eq. (16), can be rewritten, as follows: 
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This inequality can be also written in the following 
form: 
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Then, the non-detection zone of proposed method is 
introduced, as follows: 

ψψ <Δ<− NDZP                                                          (19) 

To study the performance of the proposed method, the 
critical power imbalance (i.e., ΔPcritical = ψ) and the 

coefficient k = ζωnTd should be considered. The time 
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Considering the aforementioned results, it can be 
said that D/Td for the most of DGs is smaller than one 
and in the worst case, it is equal to 1. Consequently, 
D/Td = 1 can be substituted in Eq. (23), as follows: 

180
5729.0 0δψ

Δ
=                                                       (31) 

In this equation, Δδ0 has a vital role to determine the 
limits of islanding and non–islanding conditions. To 
illustrate the discrimination procedure of the proposed 
method, the following two criterions must be 
considered. 
1. If Δδ0 ≤ 10° 

For this condition, the frequency variations certainly 
are in acceptable range (i.e., 59.3Hz ≤ f ≤60.5Hz) [3]. 
Thus, over/under frequency protections will not operate. 
Consequently, NDZ could be written, as follows: 

03182.0
180
105729.0)( ≅≤puψ  

%.1823≤ψ                                                               (32) 

2. If Δδ0 ≥ 10° 
For this situation, frequency probably exceeds its 

acceptable range and over/under frequency protections 
for more cases will operate. If frequency variations were 

remained in acceptable range, NDZ of the method could 
be achieved, as follows: 

 

03182.0
180
105729.0)( ≅≥puψ  

%.1823≥ψ                                                               (33) 
 

2.3   Procedure of Proposed Method 
In this subsection, the calculation procedure of fmean 

is described. To calculate the fmean, both procedures, i.e. 
the voltage zero crossing and the rotor speed have used. 
After the computation of fmean, the detection index is 
calculated, as follows: 

offonmeangoffon fkD // . −Δ=                                        (34) 

where, Δfmean is (fb − fmean) and fb and D are the 
fundamental frequency and the detection index of the 
proposed method, respectively. The kg is a gain, 
adjusted to 100. The flowchart of the proposed method 
is shown in Fig. 4. In this figure, Dth1 is the first 
threshold value of the detection index, which can be 
acquired from comparing islanding and non- islanding 
cases. Using Eqs. (14) and (15) for ΔP = 3% and Δδ0 = 
10°, different detection parameters have been 
represented in Table 1. 
 
Table 1. Detection indices for both case study systems. 

 Don
* Doff Dth1 Dth2 

First 
system SDG 8.10 10.32 8 32 

 
Second 
system 

Gas 
Turbine 9.62 12.86 9 36 

 Diesel 
Generator 10.37 13.42 10 40 

     *The unit of D is Hertz. 
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Fig. 4 Flowchart of proposed method. 
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3 Simulation Results and Discussion 
To verify the effectiveness of the proposed method, 
various islanding and non-islanding occurrences have 
been applied on the case study systems as shown in 
Figs. 5 and 6. For both under study systems, sixth–order 
model of SDG for simulations is used. More 
information about first and second case study systems 
can be found in [12] and [29], respectively. It should be 
noted that all simulations have been carried out in 
Matlab/SimPowerSystem software environment. The 
most important disturbances which may result in wrong 
performance of islanding detection methods are short 
circuit faults, load variations and capacitor bank 
switching. In this paper, 55 different islanding and non–
islanding cases have been studied by the proposed 
 

 
Fig. 5 Single line diagram of first case study system. 

 

 
Fig. 6 Single line diagram of second case study system. 
 

Table 2. Classification of different islanding and non-islanding conditions using proposed method on the first system. 

Disturbance Explain fmean (Hz) D (Hz) 
Exceeds 

from Vmin Detection by Classification 

Three phase to ground faults 
(ohm) 

Rf = 11  
Rf = 15  
Rf = 20 
Rf = 1   

59.81194 
59.83105 
59.86752 
59.76596 

18.806 
16.895 
13.248 
23.404 

Yes 
Yes  
Yes 
Yes 

UVP  
UVP  
UVP  
UVP 

Non- islanding 

Double line to ground faults 
(ohm) 

Rf = 7 
Rf = 15 
Rf = 30 

59.81310 
59.91235 
59.95681 

18.690 
8.765 
4.319 

Yes  
Yes 
Yes 

UVP  
UVP  
UVP 

Non- islanding 

Single line to ground faults  
(ohm)  

Rf = 5 
Rf = 10 
Rf = 20 

59.88311 
59.91728 
59.94312 

11.689 
8.272 
5.688 

Yes 
Yes  
No 

UVP  
UVP  
Dth1 

Non- islanding 

Capacitor switching off  
(Mvar) 

QC = 40 
QC = 30 
QC = 20 

59.99552  
60.00198  
60.00030 

0.448 
0.198  
0.030 

No 
No  
No 

Dth1 
Dth1 
Dth1 

Non- islanding 

Capacitor switching on  
(Mvar) 

QC = 40 
QC = 30 
QC = 20 

60.00876  
60.00793  
60.00521 

0.876  
0.793  
0.521 

No 
No  
No 

Dth1 
Dth1 
Dth1 

Non- islanding 

RLC load switching off  

(MW + j Mvar) 

S = 40 + j 30 
S = 30 + j 20 
S = 20 + j 10 

59.98999  
60.00992  
60.00705 

1.001 
0.992  
0.705 

No 
No  
No 

Dth1 
Dth1 
Dth1 

Non- islanding 

RLC load switching on  

(MW + j Mvar) 

S = 40 + j 30 
S = 30 + j 20 
S = 20 + j 10 

60.01895  
59.99190  
59.99333 

1.895  
0.810  
0.667 

No 
No  
No 

Dth1 
Dth1 
Dth1 

Non- islanding 

C.B2 or C.B3 switching off 
(percent) 

ΔP = 2.7 
ΔQ = 4 60.18375  18.375  No Dth1 Islanding 

C.B2 or C.B3 switching off 
(percent) 

ΔP = –2 
ΔQ = 8 59.84654 15.346 No Dth1 Islanding 

C.B2 or C.B3 switching off 
(percent) 

ΔP = 8 
ΔQ = –3 60.60548 60.548 No Dth1 & Dth2 Islanding 

C.B2 or C.B3 switching off 
(percent) 

ΔP = 40 
ΔQ = 60 63.82078 382.078 Yes OFP& Dth2 Islanding 

C.B2 or C.B3 switching off 
(percent) 

ΔP = 3.3 
ΔQ = 0 60.21956 21.956 No Dth1 Islanding 

C.B2 or C.B3 switching off 
(percent) 

ΔP = –6 
ΔQ = –5.5 59.58752 41.248 No Dth1 Islanding 

C.B2 or C.B3 switching off 
(percent) 

ΔP = –16.5 
ΔQ = 10 59.05327 94.673 No Dth1 & Dth2 Islanding 
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Table 3. Classification of different Islanding conditions using proposed method on the second system. 

Disturbance Explain DDG1(Hz) DDG2(Hz) 
Exceeds 

from Vmin1 
Exceeds 

from Vmin2 
Detection 

by Classification 

C.B1 switching off 
(percent) 

ΔP1 = 3 
ΔQ1 = –5 16.650 0.0635 No No 

Dth1 Islanding of DG1 

C.B1 switching off 
(percent) 

ΔP1 = 2.5 
ΔQ1 = 3 10.320 0.0638 No No 

Dth1 Islanding of DG1 

C.B1 switching off 
(percent) 

ΔP1 = –60 
ΔQ1 = 25 303.20 0.0843 No No 

UFP & 
Dth1 

Islanding of DG1 

C.B1 switching off 
(percent) 

ΔP1 = 25 
ΔQ1 = –25 37.527 0.1270 Yes Yes 

Dth2 Islanding of DG1 

C.B1 switching off 
(percent) 

ΔP1 = 40 
ΔQ1 = 5 177.81 0.3611 Yes Yes 

OFP & 
Dth2 

Islanding of DG1 

C.B2 switching off 
(percent) 

ΔP2 = 4.5 
ΔQ2 = –4 31.280 0.0921 No No Dth1 Islanding of DG2 

C.B2 switching off 
(percent) 

ΔP2 = –3 
ΔQ2 = –1 13.120 0.0484 No No Dth1 Islanding of DG2 

C.B2 switching off 
(percent) 

ΔP2 = 3.2 
ΔQ2 = 3 22.850 0.0658 No No Dth1 Islanding of DG2 

C.B2 switching off 
(percent) 

ΔP2 = 2 
ΔQ2 = 3 13.390 0.0339 No No Dth1 Islanding of DG2 

C.B2 switching off 
(percent) 

ΔP2 = –16 
ΔQ2 = 5 89.490 0.2626 No No UFP & 

Dth1 
Islanding of DG2 

C.B2 switching off 
(percent) 

ΔP2 = 55 
ΔQ2 = –33 306.50 1.5450 yes yes Dth2 Islanding of DG2 

C.B3 switching off 
(percent) 

ΔP1 = 8 
ΔQ1 = –10 
ΔP2 = 10 
ΔQ2 = –8 

53.140 54.610 No No Dth1 
Islanding of both 

DG1 and DG2 

C.B3 switching off 
(percent) 

ΔP1 = 5 
ΔQ1 = –8 
ΔP2 = 7 
ΔQ2 = –6 

32.091 33.045 No No Dth1 
Islanding of both 

DG1 and DG2 

C.B3 switching off 
(percent) 

ΔP1 = –2.5 
ΔQ1 = 2 

ΔP2 = –2.5 
ΔQ2 = 2 

11.950 12.389 No No Dth1 
Islanding of both 

DG1 and DG2 

 
 
method. The phase–locked loop block with three phase 
voltage of DG is used to achieve the frequency 
waveform. From Fig. 4, the proposed method has been 
introduced as supplementary protection of Over/Under 
Frequency Protection (OFP/UFP). To prevent sending 
of any undesired trip signal for sever disturbances like 
three phases faults, Under Voltage Protection (UVP) has 
also been used. The acceptable range of voltage is 0.88 
pu–1.1 pu [3]. In the case of frequency and regarding 
the IEEE standard–1547, variations should be in the 
range of 59.3-60.5 Hz [3]. The simulated short circuit 
faults are Single Line to Ground (SLG), Double Line to 
Ground (DLG) and three phases with different fault 

resistances. It should be noted that the short circuit 
duration of all faults is 6 cycles and both islanding and 
non–islanding disturbances start at t = 2s. 

Eventually, Tables 2-4, present the detection index 
for all of the disturbances. Table 2, depicts the tested 
results of the proposed method on the first case study 
system and Tables 3, 4 are related to the second case 
study system. 

In these tables, the subscript “1” and “2” indicates 
gas turbine and diesel generator on the second case 
study systems. From Table 2, although, it can be seen 
for more faults, the detection index exceeds from first 
threshold  but  UVP  detects  these  disturbances as non- 
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Table 4. Classification of different Non–islanding conditions using proposed method on the second system. 

Disturbance Explain DDG1 
(Hz) 

DDG2 
(Hz) 

Exceeds 
from Vmin1 

Exceeds 
from Vmin2 

Detection by 
Classification 

Three phase to ground 
faults (ohm) line CD 

Rf = 5  
Rf = 10  

1.7040 
2.0429 

8.9760 
3.5384 

Yes 
Yes  

Yes 
Yes  

UVP  
UVP  

Non- islanding 

Three phase to ground 
faults (ohm) line BC 

Rf = 5  
Rf = 10  

1.2720 
1.2174 

8.5436 
3.6059 

Yes 
Yes  

Yes 
Yes  

UVP  
UVP  

Non- islanding 

Three phase to ground 
faults (ohm) bus D 

Rf = 5  
Rf = 10  

2.0634 
2.9223 

8.8741 
3.3374 

Yes 
Yes  

Yes 
Yes  

UVP  
UVP  

Non- islanding 

DLG faults (ohm) line CD 
Rf = 5 
Rf = 10 

1.9375 
1.3308 

4.7761 
2.2294 

Yes  
Yes 

Yes  
Yes 

UVP  
UVP  

Non- islanding 

DLG faults (ohm) line BC 
Rf = 5 
Rf = 10 

1.1524 
0.7544 

4.9517 
2.3576 

Yes  
Yes 

Yes  
Yes 

UVP  
UVP  

Non- islanding 

DLG faults (ohm) bus D 
Rf = 5 
Rf = 10 

2.6814 
2.0084 

4.4321 
2.0213 

Yes  
Yes 

Yes  
Yes 

UVP  
UVP  

Non- islanding 

SLG faults (ohm) line CD 
Rf = 5 
Rf = 10 

1.1445 
0.6507 

1.7914 
1.0024 

Yes 
No 

Yes  
No 

UVP 
Dth1 

Non- islanding 

SLG faults (ohm) line BC 
Rf = 5 
Rf = 10 

0.6352 
1.1770 

2.0487 
0.3412 

Yes 
No 

Yes 
No 

UVP  
Dth1 

Non- islanding 

SLG faults (ohm) bus D 
Rf = 5 
Rf = 10 

1.6968 
0.8753 

1.5290 
0.9982 

Yes 
No 

Yes  
No 

UVP  
Dth1 

Non- islanding 

Capacitor switching off  
(Mvar) on bus C 

QC = 6 
QC = 4 
QC = 2 

0.1045 
0.0523 
0.0070 

0.3061 
0.1959 
0.0823 

No 
No  
No 

No 
No  
No 

Dth1 
Dth1 
Dth1 

Non- islanding 

Capacitor switching on  
(Mvar) on bus C 

QC = 6 
QC = 4 
QC = 2 

0.1390 
0.1117 
0.0869 

0.2236 
0.1548 
0.0924 

No 
No 
No 

No 
No  
No 

Dth1 
Dth1 
Dth1 

Non- islanding 

RLC load switching off  
(MW + j Mvar) on bus E 

S = 6 + j 4 
S = 4 + j 2 
S = 2 + j 1 

0.0569 
0.0478 
0.0358 

0.0212 
0.0184 
0.0152 

No 
No  
No 

No 
No  
No 

Dth1 
Dth1 
Dth1 

Non- islanding 

RLC load switching on  
(MW + j Mvar) on bus E 

S = 6 + j 4 
S = 4 + j 2 
S = 2 + j 1 

0.0575 
0.0483 
0.0371 

0.0233 
0.0196 
0.0168 

No 
No 
No 

No 
No  
No 

Dth1 
Dth1 
Dth1 

Non- islanding 

RLC load switching off  
(MW + j Mvar) on bus D 

S = 6 + j 4 
S = 4 + j 2 
S = 2 + j 1 

0.1031 
0.1285 
0.0502 

0.1224 
0.0549 
0.0474 

No 
No 
No 

No 
No  
No 

Dth1 
Dth1 
Dth1 

Non- islanding 

RLC load switching on  
(MW + j Mvar) on bus D 

S = 6 + j 4 
S = 4 + j 2 
S = 2 + j 1 

0.0476 
0.0360 
0.0248 

0.1514 
0.1469 
0.1273 

No 
No  
No 

No 
No  
No 

Dth1 
Dth1 
Dth1 

Non- islanding 

 
 
islanding conditions. In this paper, averaging time in all 
of the simulations has been adjusted to t = Td s. 
According to the IEEE standard–1547, the maximum 
allowable time to detect the islanding situation is 2s. 
Typically, the time of the islanding detection depends 
upon the magnitude of active and reactive power 
imbalances. For small power mismatches, the islanding 
situation should be detected within two seconds whereas 
for large power mismatches, this time is reduced to 
0.160s. The amount of Td is different for various types 

of synchronous machine–based DGs. For example, in 
first case study system, DG has a Td of 0.338s and for 
second case study, Td1=0.280s and Td2=0.275s. For these 
cases (i.e., Td > 160ms), it is better to use the OFP/UFP 
with the proposed method, because in large power 
mismatches, OFP/UFP has good performance and can 
detect the islanding condition quickly (i.e, t < 160ms) 
[21]. These conditions have been shown in Table 2 and 
3 for large values of ΔP and ΔQ. The coordination of 
the OFP/UFP and proposed method result in a better 
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effective and has a robust performance and good 
capability to detect the islanding conditions with small 
active power mismatches up to 3%. 
 
5 Conclusion 

This paper has proposed a new islanding detection 
method based on average value of frequency. By 
monitoring the frequency of the DG and calculating its 
average value, the proposed method can detect the 
islanding situation. Although this method is an integral–
based method and has a rather long detection time but in 
comparison with derivative-based methods (e.g., 
ROCOF and ROCOFOP) has small NDZ. In fact, the 
proposed method is an effective supplement for 
OFP/UFP, which can reduce NDZ of OFP/UFP to less 
than 3%. To evaluate the performance and capability of 
the proposed method, two approaches have been 
presented through analytical and simulation based 
approaches. Different islanding and non-islanding cases 
such as short circuit faults, capacitor bank switching and 
load changes in various values and locations of the test 
systems have been studied. In addition, the proposed 
method has been compared with both ROCOF and 
ROCOFOP methods and it has been shown that the 
proposed method for active power mismatches smaller 
than 10% has better performance and for larger than 
10%, because of existing OFP/UFP in structure of 
proposed method as back up protection, the same 
capability of both ROCOF and ROCOFOP methods has 
been established. 
 
Appendix 

A.   Simplified Swing Equation 
The following equation presents the swing equation 

[30, 31]: 

)sin(2
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δδδ
ω

PP
dt
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−=+                          (A−1) 

If a part of the system encountered with a 
disturbance and the rotor angle (δ) has a small variation, 
the following equation can be written: 
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This equation can be rewritten, as follows: 
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If the rotor angle deviation has a small variation (∆δ 
≤ 10°), by substituting sin (∆δ) with ∆δ and cos (∆δ) 
with 1, the above mentioned equation is converted to the 
following two simple equations. The first equation (i.e., 

(A−4)) expresses the behavior of the power system in 
steady state condition and the second one (i.e., (A−5)) 
expresses the transition state of the synchronous 
generator. 
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