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Abstract: Differential base station sometimes is not capable of sending correction
information for minutes, due to radio interference or loss of signals. To overcome the
degradation caused by the loss of Differential Global Positioning System (DGPS) Pseudo-
Range Correction (PRC), predictions of PRC is possible. In this paper, the Support Vector
Machine (SVM) and Genetic Algorithms (GAs) will be incorporated for predicting DGPS
PRC information. This study uses GAs to select parameters of SVMs. Online training for
real-time prediction of the PRC enhances the continuity of service on the differential
correction signals and therefore improves the positioning accuracy in Real Time DGPS.
Given a set of data received from low cost GPS module, the GASVM can predict the PRC
precisely when the PRC signal is lost for a short period of time. This method which is
introduced for the first time to predict of PRC is compared to other recently published
methods. The time step of the prediction was six second. The experiments show that the
total RMS prediction error of GASVM is less than 0.186m for one step and 0.76m for 10
step ahead cases.

Keywords: Genetic Algorithm, Pseudo-Range Correction, RTDGPS, Support Vector

Machine.

1 Introduction

The Global Positioning System (GPS) allows properly
equipped users to determine their position based on the
measured pseudo-ranges to at least four satellites [1]. It
provides two levels of broadcast service to the GPS
user, the standard positioning service (SPS) and the
precise positioning service (PPS). SPS is a positioning
and timing service available world-wide to all GPS
users. GPS signal contains the coarse acquisition code
(C/A) and a navigation data message [2]. The GPS
measurements are usually corrupted by several errors.
These errors can be categorized into two basic types:
bias errors (ionosphere and random errors (receiver
noise and multipath) [3]. In order to recover the
accuracy of GPS, differential techniques must be
applied. In GPS, a typical technique for estimating the
position of a moving rover object is DGPS, where two
receivers are used, the base receiver is stationary and its
exact position is known, while the other receiver is
“roving” and its position needs to be estimated. Since
the position of base station is accurately known, the
position of the rover receiver may be computed using
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the corrections to the Pseudo-Range Measurements
(PRM) [4]. Differential correction can be applied in
real-time directly in the field or during post processing
data in the office [5]. DGPS technology can achieve
higher accuracy because of the high correlation between
observations made to the same satellites at the same
time by different receivers. DGPS potentially has a
problem of slow updates. It sometimes cannot send
correction information every minute at a time, due to
radio interference or loss of signals. Absence of DGPS
correction means that the accurate position of the unit
cannot be identified [6]. To overcome such degradation
caused by the loss of DGPS PRC, predictions of
pseudo-range corrections is needed [5]. DGPS
corrections prediction has an important role in accurate
and real time positioning of GPS. When the status of
differential signal is normal, the network remains in the
training phase; once the signal fails, the network starts
to provide predicted PRC data [3]. Since DGPS
correction is a function of time, it can be modeled and
predicted using a SVM. Recently, SVM has been
developed for solving pattern recognition and nonlinear
regression estimation problems [7]. The SVM model is
able to increase forecasting accuracy by selecting
suitable parameters. Therefore, constructing an adapted
procedure to select suitable parameters is an essential
task [8]. In this study, a SVM model with GAs is
proposed to examine the feasibility of predicting system
reliability. The genetic algorithms are used to determine
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the three parameters of the proposed model. The
successful implementation of the SVM methodology
requires the specification of several techniques
parameters. This is usually accomplished through trial-
and-error procedures [9]. In the proposed methodology
GAs are used to select optimal parameters which are
required for the development of SVM models. The data
collected from the time domain simulation is then used
as input to the SVM in which support vector regression
is used as a predictor to determine DGPS correction. To
reduce training time and improve accuracy of the SVM,
the Kernel function type and Kernel parameter are
considered [8]. In recent years, various artificial neural
networks methods have been proposed to predict PRC.
A technique of predicting the DGPS pseudo-range
corrections based on Diagonal Recurrent Neural
Networks (DRNN) modeling was presented by Sang et
al (1997) [10]. In 2004, the Auto-Regressive Moving-
Average (ARMA) neural network was applied to predict
the PRC (Jwo et al 2004) [3]. More recently, Mohasseb
et al (2007) tested different neural network structures
with various training algorithms [11]. Although their
research provided useful results, the difficulty of
predicting PRC online has not yet been overcome. To
verify the effectiveness of the proposed GASVM
method, its performance is compared with ARMANN
[3]. The rest of this paper is organized as follows. In
Section 2 the preliminary background on RTDGPS
structure is briefly reviewed. In Section 3, the GASVM
techniques are discussed. Topology for PRC prediction
is described in Section 4. Experimental results are
evaluated in Section 5. The conclusion is given in
Section 6.

2 RTDGPS Structure

RTDGPS is, by definition, a relative positioning
methodology supported by the continuous GPS satellites
in view. RTDGPS correction data distribution has been
providing GPS users a means to accomplish their tasks
with high accuracy positioning in real-time. As shown
in Fig. 1, it contains two GPS receivers. For real-time
users of DGPS, the resources required are the
establishment of a reference station and a radio link to
transmit data to the users. The standard format of the
broadcasted data developed by the Radio Technical
Commission for Marine Services (RTCM) is in wide
use and RTCM has defined data messages and an
interface between the data link receiver and the DGPS
receiver [12]. In general, the data stream is mainly of
message type 1 or 9, which consists of a correction
message such as PRC. In navigation application, the
PRC is needed in real-time and it can be transmitted to
the users via a communication link. As can be shown in
Table 1, according to the coding information, every
frame of RTCM telegraphs is made up of N+2 words
(the first two words and the following N information
words). The type of the telegraphs is defined by the first
word, while the format of the remaining N words

decides the information’s type. Every word includes 30
bits; the last byte of the word is a verification code. In
this standard, there are 63 kinds of information, pseudo-
range measurement adopting type 1 and 3. Type 1
contains modified information of DGPS, while type 3
includes the coordinates of reference station [13]. In this
study, the most important factor (PRC) to consider is
message No. 1.

2.1 Pseudo-Range Corrections
The basic principle of DGPS is to utilize the
knowledge that systematic errors such as due to the
satellite clock, ephemeris and atmospheric propagation
largely affect both the base receiver and rover receiver.
Because the position of the base receiver is accurately
known, the combined error of each satellite can be
estimated. If the rover receives the estimated error, the
correlated error can be subtracted and the accuracy of
the position estimation will be improved. For any
satellite, the measured GPS pseudo-ranges at the base

station and rover station can be expressed as:

P = 1TIp + C(StB - Sts) + IpB + TPB + SpB (1)
PR = I'r + C(&tR - 6ts) + IpR + TpR + SpR (2)

where rg and ry are the geometric range between the
(unknown) user position and the (known) satellite
position for rover and base station, respectively. 6t is
the receiver clock bias and 6t° is the bias in the satellite
clock, both measured relative to GPS Time. [, and I,
reflect the delays associated with the transmission of the
signal through the ionosphere and the troposphere,
respectively. €, is used to denote UN modeled effects,
modeling errors and measurement error. Because the
position of the base station is already known, the error
in pg,which is referred here as the PRC at the base
station, is computed as:

eg =rg —pg = —C((8tg — 6t%) — I — Tog — g5 (3)

The differentially-corrected pseudo-range measure-
ment of the rover GPS is:

6R = pR + eg ® I'r + C((StR - StB) + (IPR - IDB) +
(TpR - TpB) + SpR + spB (4)

The satellite clock bias of the base receiver is similar
to that of the rover receiver [4]. The user is generally far
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Fig. 1 Real time DGPS topology.
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Table 1 RTCM Type 1 Differential GPS Correction.

ofofJoJoJoJoJoJofJolt[t 111 J1Ji]r]r]tr]2]z2]2]2]2]230

112 [3[4|5]6 7 8 9101 2 13 4 516] 7 81910 1 2 | 3 | 4] PARiTy

First word PREAMBLE MESSAGE TYPE PEFERENCE STATION ID PARITY

Second word MODIFIED Z-COUNT | SEQNO e lENGILLQF FRAME | STAT.HEALTH | PARITY

2*N;word | S| UD. | SATELLITEID < PSEUDO-RANGE CORRECTION > PARITY

2*N, + 1 word RANGE-RATE CORRECTION ISSUE OF DATATTODY f ——REPEAT PARITY
from the reference station; so, it should correct 3.1 SVM

measurement based on a previous or “old” message. To
reduce the problem caused by this time latency, the
reference stations have generated and have sent the
corrections with Range Rate Correction (RRC) [14].
This has compensated the PRC at the previous time
ty_1, for the time ty — ty_;, lineally as shown in Eq.
(5) and Fig. 2.

PRC(ty) = PRC(ty_;) + PRC(ty_).At %)

where At =t — ty_q.

However, the receiver cannot estimate RRC
correctly because of the measurement noise and
atmospheric bias. To approximate the exact value of
PRC in the time delay or loss of RTCM signal GASVM
algorithms are used to predict PRC. Given the rate of
message No. 1, RTCM signal is very important and
sends it as soon as possible. Thus, PRC prediction
increases the accuracy of the RTDGPS.

3 Hybrid GASVM Model

Recently, SVMs have been developed for solving
pattern recognition and nonlinear regression estimation
problems. The SVM model is able to increase
forecasting accuracy by selecting suitable parameter.
Therefore, constructing an adapted procedure to select
suitable parameters is an essential task [15]. In this
study, a SVM model with GAs is proposed to examine
the feasibility of predicting system reliability. To design
a SVM, one must choose a kernel function, set the
kernel parameters and determine a soft margin constant
C. The parameters that should be optimized include the
penalty parameter C and the kernel function parameters
[16]. Combining GA with SVM, this hybrid approach to
optimize the parameters, to improve the strength of each
individual technique and compensate for each other’s
weaknesses. Therefore, this research applies GA to
optimize C, &, 0 parameters in the SVM model.

nEw

PRC{ty ) —
PRCity )

=
Time

Fig. 2 Compensation PRC for time latency.
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SVMs have been used for a variety of purposes.
They can be used in two ways: for classification and for
regression. Support Vector Regression (SVR) has been
proven especially useful in prediction of time-series.

SVM was originally introduced by Vapnik and co-
workers for classification tasks and was subsequently
extended to regression problems [16]. The idea behind
SVMs is the following: input points are mapped to a
high dimensional feature space, where a separating
hyper-plane can be found. The algorithm is chosen in
such a way as to maximize the distance from the closest
patterns, a quantity which is called the margin. SVMs
are learning systems designed to automatically trade-off
accuracy and complexity by minimizing an upper bound
on the generalization error provided by the Vapnik-
Chervonenkis (VC) theory. The aim of support vector
classification is to device a computationally efficient
way of learning how to separate hyper planes well in a
high dimensional feature space [17]. SVMs are less
prone to over fitting because the classifier is
characterized by the number of support vectors rather
than the dimensionality of the data. The number of
support vectors found can be used to compute an upper
bound on the expected error rate of the SVM classifier.
Good generalization can be achieved by having SVM
with small number of support vectors irrespective of the
dimension of the dataset [16-18].

3.1.1 SVR

The basic principle of SVR is to map data in the
input space to a high dimensional feature space by using
a nonlinear mapping. Then, a linear mapping is made in
the high dimensional space. A set of data (x;,y;),i=
1,2,...,m where x; € R" andy; € R", are supposed to
be the corresponding output. SVM regression theory is
to find a nonlinear map from input space to output space
and map the data to a higher dimensional feature space
through the map, then the following estimate function is
used to make linear regression [19]:

fR=w.eX)+Db (6)

where @(X) denotes the high-dimensional feature space,
w denotes the weight vector and b denotes the bias term.
The problem of the function approximation is
equivalent with minimizing the following problem [20]:

Rreg[f] = Rreg[f] + Allw?|l =

L (v f, W) + AW (7)
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Ryglf] is objective function and 1 is the number of
the sample, L¥(y;, f(x;, w)) is called loss function.
Where | denotes the sample size, 4 is regularization
constant, L¥ is the £ -insensitive loss function which is
given by:

Ly G w)) = { ®)

The target function Eq. (8) can be minimized by
solving quadratic programming problem, which is
uniquely solvable. Empirical risk function is:

0 forlf(x)—yl<e
[f(x) —y| < € otherwise

Reemplf] = T Zisly — (), ©)
It can be normalized as follows:
W, ) =Wl + CEE +5) (10)

Vi — (W, @(X;)) —b < e+§
subject to{ (w, (X)) + b —y; < e+&
&, & 20

where, C is a pre-specified value and &, &' are slack
variables representing upper and lower constraints on
the outputs of the system. The first part of this cost
function is a weight decay which is used to regulate
weight size and penalizes large weights. Due to this
regulation, the weight converges to smaller values.
Large weights deteriorate the generalization ability of
SVM because, usually, they can cause excessive
variance [21]. The second part is a penalty function
which penalizes errors larger than +/—¢ using a so
called e-insensitive loss function Lf for each of the
training points. The positive constant C determines the
amount, up to which deviations from € are tolerated.
Errors larger than +/-¢ are denoted with the so-called
slack variables representing values above € (§7) and
below € (§7), respectively. The third part of the equation
represents constraints that are set to the values of errors
between regression prediction f(x) and true values y;.
This constrained optimization problem is solved using
the following Lagrangian form:

max W(a, a*) = max — %Z}zlz}zl(ai - a}‘)(a]- -
o) (x), o(x;)) + Yl ayi—e) —a(yi+e) (1)
with constraints,

0<a,of<ci=1.,1 ¥_(q—a)=0 (12)

where «@; and of are the so-called Lagrangian
multipliers, represent solutions to the above quadratic
problem that acts as forces pushing predictions towards
target value y;. Only the non-zero values of the
Lagrange multipliers in Eq. (12) are useful in
forecasting the regression line and are known as support
vectors. For all points inside the e-tube, the Lagrange
multipliers equal to zero do not contribute to the
regression function. Only if the requirement |y-f(x) [>¢
is fulfilled, Lagrange multipliers may be non-zero

values and can be used as support vectors. By the
Lagrange multipliers o; and of calculated,

W = Yo (g — ) K(x;,%) 13)
Now, we have solved the value of w in terms of the
Lagrange multipliers. The variable b can be computed
by applying Karush-Kuhn-Tucker (KKT) conditions
[20] which, in this case, implies that the product of the
Lagrange multipliers and constrains has to equal zero:

a(w.@x)+b—y;+e+§) =0
{0‘;(}’1 —w.9(x) —be+&,)=0 (14)
and

C—o)§ =0
{(C —-a) &) =0 (15)

Since aj, o and &, =0 foraj € (0,C), b can be
computed as follows:

{b=yi—W(p(X)—€,fOI'0(i €(0,0) (16)
b=y;—w@k)—¢forai €(0,C)
Hence, the regression function is:
f(x) = Tsvs(@ — &) K(xi,%;) + b (17)
In Eq. (17) the Kernel function,
K(Xi,Xj) = <(p(§1),(p)_(]> (18)

can be shown that in any symmetric Kernel function, k
satisfying Mercer’s condition corresponds to a dot
product in some feature space [22]. Several Kernel
functions are named as Gaussian radial basis function
(RBF) Kernel, linear Kernel and multilayer perceptron
Kernel [21]. The commonly Kernel function used is the
Gaussian RBF Kernel which is written as [22]:
lIx=yll

k(x,y) = e 20? (19)

Note that 62 is a parameter associated with RBF
function which has to be tuned. For prediction cases,
any data can be regarded as an input-output system with
nonlinear mechanism. For the nonlinear SVR, its
generalization performance depends on a good setting
of hyper-parameters C, € and the RBF kernel parameter
o. Parameter C determines penalties to estimation
errors. A large C assigns higher penalties to errors so
that the regression is trained to minimize error with
lower generalization, while a small C assigns fewer
penalties to errors; this allows the minimization of
margin with errors, hence higher generalization ability.
Parameter € controls the width of the e-insensitive zone,
used to fit the training data. The value of € can affect the
number of support vectors used to construct the
regression function [22]. Here, C, o and ¢ are user-
determined parameters, which may affect SVR
generalization performance; the selection of the
parameters plays an important role in the performance
of SVM. Therefore, these parameters need to be
properly optimized to minimize the generalization error
[18, 23].
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3.2 Genetic Algorithm

The GA is an artificial intelligence procedure based
on the theory of natural selection and evolution. GA
uses the idea of survival of the fittest by progressively
accepting better solutions to the problems. The key
feature of GA is the manipulation of a population whose
individuals are  characterized by  possessing
chromosome [24]. Therefore, GAs is distinct from many
conventional search algorithms in the following ways
[25]:

1. GAs considers not a single point but many points
in the search space which simultaneously reduce the
chance of converging to local optima.

2. GAs work directly with strings of characters
representing the parameter set, not the parameters
themselves.

3. GAs use probabilistic rules, not deterministic
rules, to guide their search.

Two important issues in GA are the genetic coding
used to define the problem and the evaluation function,
called the fitness function. Each individual solution in
GA is represented by a string called the chromosome
[26]. The initial solution population could be generated
randomly, which evolves into the next generation by
genetic operators such as selection, crossover and
mutation that means GAs perform the search process in
four stages: initialization, selection, crossover and
mutation. Fig. 3 shows the basic steps of GAs. The
solutions coded by strings are evaluated by the fitness
function. The selection operator allows strings with
higher fitness to appear with higher probability in the
next generation. Crossover is performed between two
selected individuals, called parents, by exchanging parts
of their strings, starting from a randomly chosen
crossover point. This operator tends to enable the
evolutionary process to move toward promising regions
of the search space. Mutation is used to search for
further problem space and to avoid local convergence of
GA though the GA is less time-consuming and can
obtain the optimal solution well [23, 24].

3.3 GASVR

Inspired by the natural evolution process, Holland
proposed the GAs, which are organized random search
techniques and which imitate the biological evolution
process. The algorithms are based on the principle of the
survival of the fittest which tries to retain genetic
information from generation to generation. The main
advantage of GAs is their capabilities to find optimal or
near optimal solutions with relatively modest
computational requirements [27]. In this article, GAs
are used to search for better combinations of three
parameters in SVMs, so each forecasting iteration yields
a smaller Normalized Mean Square Error (NMSE)
value. Fig. 4 shows the framework of the proposed
GASVM model. The genetic algorithms for selecting
the parameters of SVMs are presented as follows:

Step 1. (Initialization): Establish randomly an initial
population of chromosomes.

Step 2. (Evaluating fitness): Evaluate the fitness of
each chromosome. In this step, a negative NMSE is
used as the fitness function as follows.

Fitness function = — ﬁzﬁl(di —vi)? (20)

2

where 62 = %Z{“zl(di —d,)? and N is the total number

of data in the test set; d; denotes the mean of the actual
value; d; is the actual value; and y; is the predicted
value.

Step 3. (Selection): Select a mating pair, #1 parent
and #2 parents, for reproduction.

Step 4. (Crossover and mutation): Create a new
offspring by performing crossover and mutation
operations.

Step 5. (Next generation): Generate a population for
the next generation.

Step 6. (Stop conditions): If the number of
generations equals a threshold, then the best
chromosomes are presented as a solution; otherwise go
back to Step 2 [26].

GAs is used to determine the values of the three
parameters (o, C and €) in the SVM model (Fig. 4). The
intervals of three parameters are [0, 250], [0, 1000] and
[0, 0.1] respectively. The population size is set to 50.
More bits in a gene correspond to finer partition of the
search space. Parent selection is a procedure in which
two chromosomes from the parent population are
chosen according to fitness functions. Chromosomes
with a higher fitness value are more likely to generate
offspring in the next generation. The roulette wheel
selection principle is used to select chromosomes for
reproduction.

I Problem I I Initialize the I
representation population
I Problem selection I<—I Calculate fineness I

2 P |
I Problem crossover I—>I y{lem mutation I
Y K

I Problem convergence I

Fig. 3 Basic steps of GA.

Parameter selection

Forecasting

GA SVM
Stop condition
|

\ﬁ Parameter Obtained

Fig. 4 The architecture of a GASVM model.

Error calculation
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In crossovers, chromosomes are paired randomly.
The single-point-crossover principle is employed here
in. Segments of paired chromosomes between two
determined break-points are swapped. Mutations are
performed randomly by converting a 1" bit into a 0" bit
or vice versa. The rates of crossover and mutation are
determined by probabilities. Mating rate has a
probability of 0.7, mutation rate is 0.01 and the number
of generations is considered to be 40.

4 PRC Predictions Topology

Fig. 5 shows the topology provided for PRC
prediction; it consists of two major parts.

(A) Hardware (Fig. 6): It consists of a low-cost
GPS receiver and a module to convert TTL to RS232.

(1) (MOTOROLA (M12)) (Fig. 6): The technically
significant features of the GPS receiver used in data
collection process include a 12-channel GPS receiver
capable of: keeping track of up to 9 satellites, position
measuring with maximum accuracy in SPS mode (25m),
selecting satellites and making satellite's view angle
narrow, updating information in each second. MI12
receiver is supporting invers DGPS and RTCM input at
9600 baud rate (Base station and Rover) [28].

(2) (TTL to RS232): The PC serial port protocol is
RS232; therefore we designed and applied a ‘“TTL-to-
RS232” converter between USART and personal
computer (PC).

(B) Software (MATLAB): it contains comment
unit, store data unit, prediction unit and result unit.

(1) Comment unit: In order to generate the most
accurate corrections, the M12 being used as a Base
Station must be put in position-hold mode. Once the
@@BH command is invoked, the base station will start
issuing @@Ce correction messages at the requested
rate.

(2) Store unit data: After receiving the pseudo-range
correction input (@@Ce); now parse the 6 sat data slots
in this message and store PRC data by using software
MATLAB. Table 2 shows @@Ce message format.

(3) Prediction unit: The architecture of the
GASVM for predicting the PRC is shown in Fig. 7. For
the prediction of the DGPS corrections at time t+1
(denoted as prc (t+1)), a series of the DGPS corrections
pre (k), pre (k-1), ..., prc (k-n), will be used, where n is
the number of data point used as the input to the
network. The GASVM predictor receives a set of past
PRC values and infers the one at next epoch. The time
intervals between epochs are six seconds, thus time step
of the prediction was 6 second.

5 Experimental Results

The experiments on the GASVM were performed
using real data for PRC predictions. An experiment was
conducted to evaluate the system performance.
Simulation was performed on an 2.5 GHz CORE™ i5
CPU. The computer code was constructed by MATLAB
10.1 version software. The measurement update rate

was lsec and six GPS satellites were used in the
experiment. Fig. 8 shows the original DGPS corrections
of 6 satellites.

Table 2 Pseudo-range Correction Data Input.

@@Cettt ippprrd ippprrd ippprrd ippprrd ippprrd
ippprrdC<CR><LF>
Title Explanation No. Byte
Ttt GPS time reference 3
| Satellite id 1
Ppp Pseudo-range correction input 3
Rr Range Rate PRC 2
D Issue of data ephemeris 1
C Checksum 1

Hardware e—/—

Module Receiver

TTL to RS232  gpinapy Data Mo{gﬁ?l‘ﬁ

Comment Unit Store Unit Data
: Sent comment @@ Bh
. Receive Massage @@ Ce = PRC (k-n), PRC (kntl) ...

Parse Massage for PRC PRC (k-1), PRC (k)

é_-_‘\‘%’sm'lwarc ¢
: Result Unit Prediction Unit
€— SVM/GA

PRC (k+1)

Fig. 5 Topology for PRC Prediction.

Fig. 6 Hardware structure.
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Fig. 8 DGPS PRC of PRN’s 4, 22, 25, 14, 10 and 5.
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The GASVM was trained to predict the DGPS
corrections six second ahead of the current epoch. Fig. 9
shows the one-step prediction PRC (PRN10). As shown
in Fig. 9, the GASVMs, have been successful in
approximated real value. Fig. 10 shows PRC prediction
for PRN22. Figs. 11 (PRN 10) and 12 (PRN 22) shows
the 6sec ahead PRC prediction error, respectively. It is
found from Figs. 11 and 12, that GASVMs have great
approximation ability and suitability in DGPS
corrections prediction. Figs. 13 (Time step 5) and 14
(Time step 10) shows the predicted PRC value of the
GASVM for PRN 12. This time limitation is equal to
30sec and 60sec because the step time is 6 sec.

—PRC for PRN 10

|

0 k- [E :, _ _ |~ Prediction PRC
|
|

|
|
- | | |
0 200 400 600 800 1000
Time (Sec)

Fig. 9 PRC (PRN 10) prediction by GASVM (one step).

|—PRC for PRN22
—Prediction PRC

PRC (m)

1 -4
-20

| |

1 1 1 1
0 200 400 600 800 1000
Time (Sec)

Fig. 10 PRC (PRN 22) prediction (one step).
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Fig. 12 6s ahead PRC prediction error for PRN 22.
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Fig. 13 30s ahead PRC prediction error for PRN 12.
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Fig. 14 60s ahead PRC prediction error for PRN 12.
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Fig. 15 One step ahead PRC prediction error of 6 satellites.

Table 3 Comparison prediction errors statistical significance
characteristics.

Time | Parameters | MAX | MIN | Ave | VAR | RMS
65 PRN 10 0.33 0 0.12 0.22 | 0.186
PRN 22 0.21 0 0.11 0.21 0.183

30s PRN 7 0.6 0.056 | 0.23 0.53 | 0.587
60 s PRN7 2 0.1 0.36 | 0.761 | 0.867

From above figures, it can be seen that the accuracy
of the PRC prediction has dramatically improved with
the proposed approach. In prediction unit, PRC for six
satellites simultaneously and real-time was predicted.
Fig. 15 shows the DGPS PRC prediction error for PRN
10, 4, 22, 14, 5, 25. Table 3 shows prediction errors
statistical significance characteristics for 1000 test data
using GASVM. 1t is found that the maximum prediction
error is less than 0.3 m; also total RMS prediction errors
for algorithm is 0.186m for one step ahead. A
comparison of the accuracy prediction results between
the ARMANN and GASVM was carried out. The NN
was trained using the BP algorithm and it took 3
minutes to train the ARMANN before it was ready to
provide DGPS corrections.

Once the NN was trained, the constructed ARMA
model was used to predict a time series with a step
length of 6S. The neural network was trained to predict
DGPS corrections 6S ahead of the current correction.
The RMSE prediction accuracy of the ARMA (9, 8)
mode was 0.2472m. However, the PSOSM method
accuracy with time step equal is about 1.8m.
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6 Conclusion

A GASVM that can effectively be employed to
predict the pseudo-range differential corrections online
has been presented. When the PRC signal was
temporarily lost, the GASVM predicted PRC correction
data with a significant accuracy improvement. In
summary, conventional algorithms have difficulties in
precisely predicting the DGPS corrections online.

It uses for improvement RTDGPS accuracy. A
comparison between the ARMANN and GASVM
shows that the GASVM requires less network training
time and in equal time step GASVM prediction RMSE
is less than ARMANN.

References

[1] M. H. Refan and H. Valizadeh, “Computer
Network Time Synchronization using a Low Cost
GPS Engine”, Iranian Journal of Electrical &
Electronic Engineering, Vol. 8, No. 3, pp. 206-
216, 2012.

[2] M. R. Mosavi, “An Adaptive Correction
Technique for DGPS using Recurrent Wavelet
Neural Network”, Int. Conference on Systems,
Man and Cybernetics, pp. 3029-3033, 2007.

[3] D. Jwo, T. Sh. Lee and Y. W. Tseng, “ARMA
Neural Networks for Predicting DGPS Pseudo-
range Correction”, the journal of navigation, Vol.
57, No. 1, pp. 275-286, 2004.

[4] Y. Geng, “Online DGPS Correction Prediction
using Recurrent Neural Networks with Unscented
Kalman filter”, International Global Navigation
Satellite Systems Society IGNSS Symposium, The
University of New South Wales, Sydney,
Australia, 4-6 Dec. 2007.

[ST M. R. Mosavi, “Comparing DGPS Corrections
Prediction using Neural Network, Fuzzy Neural
Network and Kalman Filter”, Journal of GPS
Solutions, Vol. 10, No. 2, pp. 97-107. 2006.

[6] K. Kobayashi, K. C. Cheok, K. Watanabe and F.
Munekata,  “Accurate  differential  global
positioning system via fuzzy logic Kalman filter
sensor fusion technique”, IEEE Transaction on
Industrial Electronics, Vol. 45, No. 3, pp. 510-
518, 1998.

[7] F.E. H. Tay and L. Cao, “Application of support
vector machines in financial time series
forecasting, Omega”, The International Journal
of Management Science, Vol. 29, No. 3, pp. 309-
317,2001.

[8] C. W. J. Granger, “Combining forecasts- Twenty
years later””, Journal of Forecasting, Vol. 8, No.
4, pp. 167-173, 1989.

[91 J.H.Minand Y. C. Lee, “Bankruptcy prediction
using support vector machine with optimal choice
of kernel function parameters”, Expert Systems
with Applications, Vol. 28, No. 4, pp. 603-614,
2005.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

J. Sang, K. Kubik and L. Zhang, “Prediction of
DGPS corrections with neural networks”, 1st
Conference on Knowledge-based Intelligent
Electronics Systems, Adelaide, Australia, 21-23
May 1997.

M. Mohasseb, A. Rabbany, O. Alim and R.
Rashad, “DGPS correction prediction using
artificial neural networks”, The Journal of
Navigation, Vol. 60, No. 2, pp. 291-301, 2007.
Radio Technical Commission for Maritime
Services Special Committee 104, “RTCM SC-
104, Recommended Standards for Differential
Navstar GPS Service”, Version 2.3, 2001.

X. U. Yingle, I. L. Qunzhan, X. Shaofeng and Z.
Liyan, “Study on Algorithm and Communication
Protocol of Differential GPS Positioning based on
Pseudo-range”, Int. Forum on Information
Technology and Applications, pp. 606-609, 2009.
B. Park, J. Kim and C. Kee, “RRC Unnecessary
for DGPS Messages”, IEEE Transactions on
Aerospace and Electronic Systems, Vol. 42, No.
3, pp- 1149-1160, 2006.

C. L. Huang and C. J. G. Wan, “A GA-based
attribute selection and parameter optimization for
support vector machine”, Expert Systems with
Applications, Vol. 31, No .2, pp. 231-240, 2006.
H. Drucker, C. Burges, L. Kaufman, A. Smola
and V. N. Vapnik, “Support Vector Regression
Machines”, Neural Information Processing
Systems, MIT Press, Cambridge, MA, Vol. 9, pp.
155-161, 1997.

V. N. Vapnik, The Nature of Statistical Learning
Theory, Springer Verlag, 1995.

A. Farag and M. M. Refaat, “Regression Using
Support Vector Machines: Basic Foundations”,
Technical Report, Dec. 2004.

C. J. C. Burgers, “A tutorial on support vector
machines for pattern recognition”, Data Mining
and Knowledge Discovery, Vol. 2, pp. 121-167,
1998.

L. J. Cao and F. E. H. Tay, “Support vector
machine with adaptive parameters in financial
time series forecasting”, IEEE Transactions on
Neural Network, Vol. 14, No. 6, pp. 1506-1518,
2003.

H. Drucker, C. Burges, L. Kaufman, A. Smola
and V. N. Vapnik, “Support Vector Regression
Machines”, MIT Press, Cambridge, Vol. 9, pp.
155-161, 1997.

P. Mingiang, Z. Dehuai and X. U. Gang,
“Temperature Prediction of Hydrogen Producing
reactor using SVM regression with PSO”,
Journal of Computers, Vol. 5, No. 3, pp. 388-393,
2010.

R. Yuan and B. Guangchen, “Determination of
Optimal SVM Parameters by Using GA/PSO”,
Journal of computers, Vol. 5, No. 8, pp.1160-
1168, 2010.

222 Iranian Journal of Electrical & Electronic Engineering, Vol. 9, No. 4, Dec. 2013



[24] S. H. Zahiri, H. Rajabi Mashhadi and S. A.
Seyedin, “Intelligent and Robust Genetic
Algorithm Based Classifier”, Iranian Journal of
Electrical & Electronic Engineering, Vol. 1, No.
3, pp. 1-9, 2005.

[25] M. Soleimanpour-Moghadam and S. Talebi, “A
novel technique for steganography method based
on improved genetic algorithm optimization in
spatial domain”, lranian Journal of Electrical &
Electronic Engineering, Vol. 9, No. 2, pp. 67-75,
2013.

[26] P. P. Feng, H. W. Chiang and L. Y. Shen,
“Determining Parameters of Support Vector
Machines by Genetic Algorithms-Applications to
Reliability Prediction”, International Journal of
Operations Research, Vol. 2, No. 1, pp. 1-7,
2005.

[27] P.F. Pai, Ch. Sh. Lin, W. Ch. Hong and T. Chen,
“Feature Selection Methods Involving SVMs for
Prediction of Insolvency in Non-life Insurance
Companies”, Information and Management
Sciences, Vol. 17, No. 2, pp. 19-32, 2006.

[28] MI12+ GPS Receiver User’s Guide, Motorola
GPS Products - M12+ User's Guide Revision 6.X
09FEBO0S5, 2004.

Mohammad Hossein Refan received
his B.Sc. in Electronics Engineering
from Iran University of Science and
\ Technology, Tehran, Iran in 1972. After

. 12 years working and experience in
industry, he started studying again in
1989 and received his M.Sc. and Ph.D.
in same field and the same University in
1992 and 1999 respectively. He is
currently Professor Assistance of Electrical and Computer
Engineering Faculty, Shahid Rajaece Teacher Training
University, Tehran, Iran. He is the author of about 50
scientific  publications on journals and international
conferences. His research interests include GPS, DCS, and
Automation System.

Adel Dameshghi was born in1986 and
Received his B.S. and M.S. degrees in
Electronic Engineering from Department
of Electrical Engineering, of Electrical
and Computer Engineering, Shahid
Rajaece Teacher Training University
(SRTTU), Tehran, Iran, in 2011 and
2013 respectively. His research interests
include Boolean Function, GPS, Electric
and Hybrid Vehicle.

Mehrnoosh Kamarzarrin was born in

1991 and is receiving currently her B.S

degrees (with the highest honors) in

= Electronic Engineering from

Department of Electrical Engineering,

of Electrical and Computer

Engineering, Shahid Rajace Teacher

Training University (SRTTU), Tehran,

Iran, in 2013. Her research interests

include GPS, wireless communications and networking with a

focus on cognitive radios, Analog electronics, Boolean
Function.

Refan et al: Real Time Pseudo-Range Correction Predicting by a Hybrid GASVM Model ... 223



