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Abstract: Differential base station sometimes is not capable of sending correction 
information for minutes, due to radio interference or loss of signals. To overcome the 
degradation caused by the loss of Differential Global Positioning System (DGPS) Pseudo-
Range Correction (PRC), predictions of PRC is possible. In this paper, the Support Vector 
Machine (SVM) and Genetic Algorithms (GAs) will be incorporated for predicting DGPS 
PRC information. This study uses GAs to select parameters of SVMs. Online training for 
real-time prediction of the PRC enhances the continuity of service on the differential 
correction signals and therefore improves the positioning accuracy in Real Time DGPS. 
Given a set of data received from low cost GPS module, the GASVM can predict the PRC 
precisely when the PRC signal is lost for a short period of time. This method which is 
introduced for the first time to predict of PRC is compared to other recently published 
methods. The time step of the prediction was six second. The experiments show that the 
total RMS prediction error of GASVM is less than 0.186m for one step and 0.76m for 10 
step ahead cases. 
 
Keywords: Genetic Algorithm, Pseudo-Range Correction, RTDGPS, Support Vector 
Machine. 
 

1 Introduction � 
The Global Positioning System (GPS) allows properly 
equipped users to determine their position based on the 
measured pseudo-ranges to at least four satellites [1]. It 
provides two levels of broadcast service to the GPS 
user, the standard positioning service (SPS) and the 
precise positioning service (PPS). SPS is a positioning 
and timing service available world-wide to all GPS 
users. GPS signal contains the coarse acquisition code 
(C/A) and a navigation data message [2]. The GPS 
measurements are usually corrupted by several errors. 
These errors can be categorized into two basic types: 
bias errors (ionosphere and random errors (receiver 
noise and multipath) [3]. In order to recover the 
accuracy of GPS, differential techniques must be 
applied. In GPS, a typical technique for estimating the 
position of a moving rover object is DGPS, where two 
receivers are used, the base receiver is stationary and its 
exact position is known, while the other receiver is 
“roving” and its position needs to be estimated. Since 
the position of base station is accurately known, the 
position of the rover receiver may be computed using 
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the corrections to the Pseudo-Range Measurements 
(PRM) [4]. Differential correction can be applied in 
real-time directly in the field or during post processing 
data in the office [5]. DGPS technology can achieve 
higher accuracy because of the high correlation between 
observations made to the same satellites at the same 
time by different receivers. DGPS potentially has a 
problem of slow updates. It sometimes cannot send 
correction information every minute at a time, due to 
radio interference or loss of signals. Absence of DGPS 
correction means that the accurate position of the unit 
cannot be identified [6]. To overcome such degradation 
caused by the loss of DGPS PRC, predictions of 
pseudo-range corrections is needed [5]. DGPS 
corrections prediction has an important role in accurate 
and real time positioning of GPS. When the status of 
differential signal is normal, the network remains in the 
training phase; once the signal fails, the network starts 
to provide predicted PRC data [3]. Since DGPS 
correction is a function of time, it can be modeled and 
predicted using a SVM. Recently, SVM has been 
developed for solving pattern recognition and nonlinear 
regression estimation problems [7]. The SVM model is 
able to increase forecasting accuracy by selecting 
suitable parameters. Therefore, constructing an adapted 
procedure to select suitable parameters is an essential 
task [8]. In this study, a SVM model with GAs is 
proposed to examine the feasibility of predicting system 
reliability. The genetic algorithms are used to determine 
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R୰ୣ୥ሾfሿ is objective function and l is the number of 
the sample, Lக൫y୧, fሺxనഥ , wሻ൯ is called loss function. 
Where l denotes the sample size, ߣ is regularization 
constant,  Lக is the ε -insensitive loss function which is 
given by: 

L൫y୧, fሺxనഥ , wሻ൯ ൌ ൜  0     for |fሺxሻ െ y| ൏                   ߝ
|fሺxሻ െ y| ൏  (8)              ݁ݏ݅ݓݎ݄݁ݐ݋   ߝ

The target function Eq. (8) can be minimized by 
solving quadratic programming problem, which is 
uniquely solvable. Empirical risk function is: 

Rக
ୣ୫୮ሾfሿ ൌ ଵ

୪
∑ |y െ fሺxሻ|க

୪
୧ୀଵ                                        (9) 

It can be normalized as follows: 

φሺw, ξሻ ൌ ଵ
ଶ

|w|ଶ ൅ C ∑ሺξ୧
ି ൅ ξ୧

ାሻ                              (10) 

 subject to ቐ
y୧ െ ,wۦ φሺxത୧ሻۧ െ b ൑ ε൅ξ୧

ି 
,wۦ φሺxത୧ሻۧ ൅ b െ y୧ ൑ ε൅ξ୧

ା 
ξ୧

ି, ξ୧
ା                          ൒ 0

 

where, C is a pre-specified value and ξ୧
ି, ξ୧

ା are slack 
variables representing upper and lower constraints on 
the outputs of the system. The first part of this cost 
function is a weight decay which is used to regulate 
weight size and penalizes large weights. Due to this 
regulation, the weight converges to smaller values. 
Large weights deteriorate the generalization ability of 
SVM because, usually, they can cause excessive 
variance [21]. The second part is a penalty function 
which penalizes errors larger than ൅/െε using a so 
called ε-insensitive loss function Lக for each of the 
training points. The positive constant C determines the 
amount, up to which deviations from ε are tolerated. 
Errors larger than +/-ε are denoted with the so-called 
slack variables representing values above ε (ξା) and 
below ε (ξି), respectively. The third part of the equation 
represents constraints that are set to the values of errors 
between regression prediction f(x) and true values y୧. 
This constrained optimization problem is solved using 
the following Lagrangian form: 

max  Wሺα, αכሻ ൌ max െ ଵ
ଶ

∑ ∑ ሺα୧ െ α୧
ሻ൫α୨כ െ୪

୨ୀଵ
୪
୧ୀଵ

α୨
,φሺx୧ሻۦሻכ φሺx୧ሻۧ ൅ ∑ α୧ሺy୧ െ εሻ୪

୧ୀଵ െ α୧
ሺy୧כ ൅ εሻ     (11) 

with constraints, 

0 ൑ α୧, α୧
כ ൑ c   i ൌ 1, … , l  ∑ ሺα୧ െ α୧

ሻ୪כ
୧ୀଵ ൌ 0         (12) 

where α୧  and α୧
 are the so-called Lagrangian כ

multipliers, represent solutions to the above quadratic 
problem that acts as forces pushing predictions towards 
target value y୧. Only the non-zero values of the 
Lagrange multipliers in Eq. (12) are useful in 
forecasting the regression line and are known as support 
vectors. For all points inside the e-tube, the Lagrange 
multipliers equal to zero do not contribute to the 
regression function. Only if the requirement |y-f(x) |≥ε 
is fulfilled, Lagrange multipliers may be non-zero 

values and can be used as support vectors. By the 
Lagrange multipliers α୧ and α୧

 ,calculated כ
wഥ ൌ ∑ ሺα୧ െ α୧

ሻ୪כ
୧ୀଵ Kሺx୧, xሻ                                       (13) 

Now, we have solved the value of w in terms of the 
Lagrange multipliers. The variable b can be computed 
by applying Karush-Kuhn-Tucker (KKT) conditions 
[20] which, in this case, implies that the product of the 
Lagrange multipliers and constrains has to equal zero: 

ቊ
α୧ሺw. φሺxሻ ൅ b െ y୧ ൅ ε ൅ ξ୧ሻ ൌ 0       

α୧
൫y୧כ െ w. φሺxሻ െ bε ൅ ξכ

୧൯ ൌ 0                              (14) 

and 

൜
ሺC െ α୧ሻξ୧ ൌ 0               
ሺC െ α୧

כሻ ξכ
୧ሻ ൌ 0                                                       (15) 

Since α୧, α୧
כand ξ  כ

୧ ൌ 0 for α୧
כ א ሺ0, Cሻ, b can be 

computed as follows: 

൜b ൌ y୧ െ w φሺxሻ െ ε, for α୧ א  ሺ0, Cሻ             
b ൌ y୧ െ w φሺxሻ െ ε, for α୧

כ א ሺ0, Cሻ                       (16) 

Hence, the regression function is: 

fሺxሻ ൌ ∑ ሺαഥ୧ െ αഥ୧
ሻୗVୱכ K൫x୧, x୨൯ ൅ b                            (17) 

In Eq. (17) the Kernel function, 

K൫x୧, x୨൯ ൌ ,φሺxത୧ሻۦ φxത୨ൿ                                             (18) 

can be shown that in any symmetric Kernel function, k 
satisfying Mercer’s condition corresponds to a dot 
product in some feature space [22]. Several Kernel 
functions are named as Gaussian radial basis function 
(RBF) Kernel, linear Kernel and multilayer perceptron 
Kernel [21]. The commonly Kernel function used is the 
Gaussian RBF Kernel which is written as [22]: 

kሺx, yሻ ൌ e
ԡ౮ష౯ԡ

మಚమ                                                           (19) 
Note that σଶ is a parameter associated with RBF 

function which has to be tuned. For prediction cases, 
any data can be regarded as an input-output system with 
nonlinear mechanism. For the nonlinear SVR, its 
generalization performance depends on a good setting 
of hyper-parameters C, ε and the RBF kernel parameter 
σ. Parameter C determines penalties to estimation 
errors. A large C assigns higher penalties to errors so 
that the regression is trained to minimize error with 
lower generalization, while a small C assigns fewer 
penalties to errors; this allows the minimization of 
margin with errors, hence higher generalization ability. 
Parameter ε controls the width of the ε-insensitive zone, 
used to fit the training data. The value of ε can affect the 
number of support vectors used to construct the 
regression function [22]. Here, C, σ and ε are user-
determined parameters, which may affect SVR 
generalization performance; the selection of the 
parameters plays an important role in the performance 
of SVM. Therefore, these parameters need to be 
properly optimized to minimize the generalization error 
[18, 23]. 
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3.2  Genetic Algorithm 
The GA is an artificial intelligence procedure based 

on the theory of natural selection and evolution. GA 
uses the idea of survival of the fittest by progressively 
accepting better solutions to the problems.  The key 
feature of GA is the manipulation of a population whose 
individuals are characterized by possessing 
chromosome [24]. Therefore, GAs is distinct from many 
conventional search algorithms in the following ways 
[25]: 

1. GAs considers not a single point but many points 
in the search space which simultaneously reduce the 
chance of converging to local optima. 

2. GAs work directly with strings of characters 
representing the parameter set, not the parameters 
themselves. 

3. GAs use probabilistic rules, not deterministic 
rules, to guide their search. 

Two important issues in GA are the genetic coding 
used to define the problem and the evaluation function, 
called the fitness function. Each individual solution in 
GA is represented by a string called the chromosome 
[26]. The initial solution population could be generated 
randomly, which evolves into the next generation by 
genetic operators such as selection, crossover and 
mutation that means GAs perform the search process in 
four stages: initialization, selection, crossover and 
mutation. Fig. 3 shows the basic steps of GAs. The 
solutions coded by strings are evaluated by the fitness 
function. The selection operator allows strings with 
higher fitness to appear with higher probability in the 
next generation. Crossover is performed between two 
selected individuals, called parents, by exchanging parts 
of their strings, starting from a randomly chosen 
crossover point. This operator tends to enable the 
evolutionary process to move toward promising regions 
of the search space. Mutation is used to search for 
further problem space and to avoid local convergence of 
GA though the GA is less time-consuming and can 
obtain the optimal solution well [23, 24]. 
 

3.3  GASVR 
Inspired by the natural evolution process, Holland 

proposed the GAs, which are organized random search 
techniques and which imitate the biological evolution 
process. The algorithms are based on the principle of the 
survival of the fittest which tries to retain genetic 
information from generation to generation. The main 
advantage of GAs is their capabilities to find optimal or 
near optimal solutions with relatively modest 
computational requirements [27]. In this article, GAs 
are used to search for better combinations of three 
parameters in SVMs, so each forecasting iteration yields 
a smaller Normalized Mean Square Error (NMSE) 
value. Fig. 4 shows the framework of the proposed 
GASVM model. The genetic algorithms for selecting 
the parameters of SVMs are presented as follows: 

Step 1. (Initialization): Establish randomly an initial 
population of chromosomes. 

Step 2. (Evaluating fitness): Evaluate the fitness of 
each chromosome. In this step, a negative NMSE is 
used as the fitness function as follows. 

Fitness function ൌ െ ଵ
஢మN

∑ ሺd୧ െ y୧ሻଶN
୧ୀଵ                 (20) 

where σଶ ൌ ଵ
N

∑ ሺd୧ െ dనഥ ሻଶN
୧ୀଵ  and N is the total number 

of data in the test set; d୧ denotes the mean of the actual 
value; d୧ is the actual value; and y୧ is the predicted 
value. 

Step 3. (Selection): Select a mating pair, #1 parent 
and #2 parents, for reproduction. 

Step 4. (Crossover and mutation): Create a new 
offspring by performing crossover and mutation 
operations. 

Step 5. (Next generation): Generate a population for 
the next generation. 

Step 6. (Stop conditions): If the number of 
generations equals a threshold, then the best 
chromosomes are presented as a solution; otherwise go 
back to Step 2 [26]. 

GAs is used to determine the values of the three 
parameters (σ, C and ε) in the SVM model (Fig. 4). The 
intervals of three parameters are [0, 250], [0, 1000] and 
[0, 0.1] respectively. The population size is set to 50. 
More bits in a gene correspond to finer partition of the 
search space. Parent selection is a procedure in which 
two chromosomes from the parent population are 
chosen according to fitness functions. Chromosomes 
with a higher fitness value are more likely to generate 
offspring in the next generation. The roulette wheel 
selection principle is used to select chromosomes for 
reproduction. 
 
 

 
Fig. 3 Basic steps of GA. 
 
 

 
Fig. 4 The architecture of a GASVM model. 
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In crossovers, chromosomes are paired randomly. 
The single-point-crossover principle is employed here 
in. Segments of paired chromosomes between two 
determined break-points are swapped. Mutations are 
performed randomly by converting a 1" bit into a 0" bit 
or vice versa. The rates of crossover and mutation are 
determined by probabilities. Mating rate has a 
probability of 0.7, mutation rate is 0.01 and the number 
of generations is considered to be 40. 
 
4 PRC Predictions Topology 

Fig. 5 shows the topology provided for PRC 
prediction; it consists of two major parts. 

(A) Hardware (Fig. 6): It consists of a low-cost 
GPS receiver and a module to convert TTL to RS232. 

(1) (MOTOROLA (M12)) (Fig. 6): The technically 
significant features of the GPS receiver used in data 
collection process include a 12-channel GPS receiver 
capable of: keeping track of up to 9 satellites, position 
measuring with maximum accuracy in SPS mode (25m), 
selecting satellites and making satellite's view angle 
narrow, updating information in each second. M12 
receiver is supporting invers DGPS and RTCM input at 
9600 baud rate (Base station and Rover) [28]. 

(2) (TTL to RS232): The PC serial port protocol is 
RS232; therefore we designed and applied a ‘‘TTL-to-
RS232’’ converter between USART and personal 
computer (PC). 

(B) Software (MATLAB): it contains comment 
unit, store data unit, prediction unit and result unit. 

(1) Comment unit: In order to generate the most 
accurate corrections, the M12 being used as a Base 
Station must be put in position-hold mode. Once the 
@@BH command is invoked, the base station will start 
issuing @@Ce correction messages at the requested 
rate. 

(2) Store unit data: After receiving the pseudo-range 
correction input (@@Ce); now parse the 6 sat data slots 
in this message and store PRC data by using software 
MATLAB. Table 2 shows @@Ce message format. 

(3) Prediction unit: The architecture of the 
GASVM for predicting the PRC is shown in Fig. 7. For 
the prediction of the DGPS corrections at time t+1 
(denoted as prc (t+1)), a series of the DGPS corrections 
prc (k), prc (k-1), …, prc (k-n), will be used, where n is 
the number of data point used as the input to the 
network. The GASVM predictor receives a set of past 
PRC values and infers the one at next epoch. The time 
intervals between epochs are six seconds, thus time step 
of the prediction was 6 second. 
 
5 Experimental Results 

The experiments on the GASVM were performed 
using real data for PRC predictions. An experiment was 
conducted to evaluate the system performance. 
Simulation was performed on an 2.5 GHz CORETM i5 
CPU. The computer code was constructed by MATLAB 
10.1 version software. The measurement update rate 

was 1sec and six GPS satellites were used in the 
experiment. Fig. 8 shows the original DGPS corrections 
of 6 satellites. 
 
Table 2 Pseudo-range Correction Data Input. 

@@Cettt ippprrd ippprrd ippprrd ippprrd ippprrd 
ippprrdC<CR><LF> 
Title Explanation No. Byte 
Ttt GPS time reference 3 
I Satellite id 1 

Ppp Pseudo-range correction input 3 
Rr Range Rate PRC 2 
D Issue of data ephemeris 1 
C Checksum 1 

 
 

 
Fig. 5 Topology for PRC Prediction. 
 

 
Fig. 6 Hardware structure. 
 

 
Fig. 7 Architecture for predicting the PRC. 
 

 
Fig. 8 DGPS PRC of PRN’s 4, 22, 25, 14, 10 and 5. 
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The GASVM was trained to predict the DGPS 
corrections six second ahead of the current epoch. Fig. 9 
shows the one-step prediction PRC (PRN10). As shown 
in Fig. 9, the GASVMs, have been successful in 
approximated real value. Fig. 10 shows PRC prediction 
for PRN22. Figs. 11 (PRN 10) and 12 (PRN 22) shows 
the 6sec ahead PRC prediction error, respectively. It is 
found from Figs. 11 and 12, that GASVMs have great 
approximation ability and suitability in DGPS 
corrections prediction. Figs. 13 (Time step 5) and 14 
(Time step 10) shows the predicted PRC value of the 
GASVM for PRN 12. This time limitation is equal to 
30sec and 60sec because the step time is 6 sec. 
 
 
 

 
Fig. 9 PRC (PRN 10) prediction by GASVM (one step). 
 
 

 
Fig. 10 PRC (PRN 22) prediction (one step). 
 
 

 
 
 
Fig. 11 6s ahead PRC prediction error for PRN 10. 

 
Fig. 12 6s ahead PRC prediction error for PRN 22. 

 
Fig. 13 30s ahead PRC prediction error for PRN 12. 
 

 
Fig. 14 60s ahead PRC prediction error for PRN 12. 
 

 
Fig. 15 One step ahead PRC prediction error of 6 satellites. 
 
Table 3 Comparison prediction errors statistical significance 
characteristics. 

Time Parameters MAX MIN Ave VAR RMS 

6 s PRN 10 0.33 0 0.12 0.22 0.186  
PRN 22 0.21 0 0.11 0.21 0.183 

30 s PRN 7 0.6 0.056 0.23 0.53 0.587 
60 s PRN7 2 0.1 0.36 0.761 0.867 

 
From above figures, it can be seen that the accuracy 

of the PRC prediction has dramatically improved with 
the proposed approach. In prediction unit, PRC for six 
satellites simultaneously and real-time was predicted. 
Fig. 15 shows the DGPS PRC prediction error for PRN 
10, 4, 22, 14, 5, 25. Table 3 shows prediction errors 
statistical significance characteristics for 1000 test data 
using GASVM. It is found that the maximum prediction 
error is less than 0.3 m; also total RMS prediction errors 
for algorithm is 0.186m for one step ahead. A 
comparison of the accuracy prediction results between 
the ARMANN and GASVM was carried out. The NN 
was trained using the BP algorithm and it took 3 
minutes to train the ARMANN before it was ready to 
provide DGPS corrections. 

Once the NN was trained, the constructed ARMA 
model was used to predict a time series with a step 
length of 6S. The neural network was trained to predict 
DGPS corrections 6S ahead of the current correction. 
The RMSE prediction accuracy of the ARMA (9, 8) 
mode was 0.2472m. However, the PSOSM method 
accuracy with time step equal is about 1.8m. 
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6 Conclusion 
A GASVM that can effectively be employed to 

predict the pseudo-range differential corrections online 
has been presented. When the PRC signal was 
temporarily lost, the GASVM predicted PRC correction 
data with a significant accuracy improvement. In 
summary, conventional algorithms have difficulties in 
precisely predicting the DGPS corrections online. 

It uses for improvement RTDGPS accuracy. A 
comparison between the ARMANN and GASVM 
shows that the GASVM requires less network training 
time and in equal time step GASVM prediction RMSE 
is less than ARMANN. 
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