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Abstract: Microgrids (MGs) usually consist of several types of Distributed Energy
Resources (DERS) like renewable and conventional generation units, energy storages and
responsive loads. In order to operate the MG with minimum cost and maximum reliably, an
integrated scheduling model of DERs should be implemented. In this paper, an operational
planning model of a MG which considers Demand Response (DR) and Electric Vehicles
(EVs) charge/discharge programs are proposed. The proposed methodology investigates the
potential role of EVs and DR in providing reserve capacity for a MG with a high
contribution from variable generation such as wind and solar power. The novelty of this
paper is the demand side participation in energy and reserve scheduling, simultaneously.
The proposed model was tested on a typical MG system in connected mode and the results
show that integrated scheduling of EVs and DR programs will reduce total operation cost of
MG and cause more efficient use of resources.

Keywords: Demand Response, Electric Vehicle, Microgrids, Renewable Generation,

Reserve.

1 Introduction

The Microgrids (MGs) are the systems that integrate
Distributed Generation (DG) units, energy storage
systems and controllable loads on a low voltage network
which can operate in either grid-connected mode or
stand-alone mode [1, 2]. A renewable-based MG can be
understood as a particular case of a more general
concept called a ‘smart grid’. Smart grids are
understood to be the key enabling technology for
renewable energy development, electric vehicle (EVS)
adoption and energy efficiency improvements [3].
Moreover, Energy Management System (EMS) is
essential supervisory control tool used to optimally
operate and schedule MGs.

On the other hand, with increasing concerns about
oil sustainability and the negative environmental impact
of petroleum-based transportation worldwide, EVs have
often been suggested as an effective technology to
reduce gasoline consumption and emissions. The
electrification of the transportation sector brings more
challenges and offers new opportunities to the power
system planning and operation [4, 5].
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In [6], a distributed demand response algorithm for
EVs charging using the concept of congesting principle
in the internet traffic control has been proposed. In [7], a
heuristic method has been implemented to minimize the
EV charging cost in response to time-of-use price in a
regulated market demonstrating that peak demand can
be reduced.

EV owners may also make money by using the
stored energy in their vehicles; the battery of EV can
discharge as well as charge according to the owner
convenience. Moreover, Vehicle-to-Grid (V2G)
capability provides some valuable power system
services such as regulation, spinning reserve, and
peaking capacity [8].

An analysis on the six-bus meshed network based on
dynamic programming for finding out the optimal size,
site has been presented in [9]. The paper also
determined the optimal mix of DERs among
microturbines (MTs), photovoltaic (PV), and battery
storage to meet the electrical and thermal loads. It used
minimization of cost as the objective function that the
cost included deployment cost, heat compensation cost,
and fuel cost. The paper also imposed a reliability
constraint on the analysis.

The authors in [10] described a centralized control
system for a MG. The controller has been used to
optimize the operation of the MG during interconnected
operation, i.e., the production of local generators and
energy exchanges with the distribution network were
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maximized. Two market policies were assumed to offer
options for controllable loads, and this demand-side
bidding was incorporated into the centralized control
system. However, this work did not considered
renewable generation uncertainty and did not allocate
reserve in its model. The authors in [11] using particle
swarm optimization, reduced the costs of MGs with
controllable loads and battery storage by selling stored
energy at high prices and shave peak loads of the larger
system.

Another investigated concept in this paper deals with
demand response (DR). It is used by electric utilities to
manage customer electricity consumption in response to
supply conditions. Utilities encourage customers to
reduce their consumption at critical periods or in
response to market prices. Currently, generation and
transmission system facilities are oversized to cover
peak demand plus a margin for forecasting error and
unforeseen events. Smoothing such peak demand could
lead to cost and size reduction of the plant. Some
systems, such as DR, may encourage energy storage to
arbitrage within periods of low and high demand (or
low and high prices). In the literature, there are several
studies investigating DR concept in MGs for different
applications, for instance: demand shifting and peak
shaving [12-15], DR exchange in which DR is treated
as a public good to be exchanged between buyers and
sellers [16], load and generation profiles control [17,
18], incentive based DR regulation considering
penalties for customers in case of no load reduction
response [19], emergency demand response for real-
time voltage control in smart distribution systems [20],
and the combination of distributed interruptible load
shedding and dispatched micro-sources to manage the
network by distribution system operators [21]. A
dynamic modeling and control strategy for a sustainable
MG primarily powered by wind and solar energy has
been presented in [22]. This study has considered both
wind energy and solar irradiance changes in
combination with load power variations.

In this paper, the MG is operated by a Microgrid
Energy Management System (MEMS) that manages the
technical features of generation and consumption as
well as economical aspect of operation. The MEMS is
responsible for optimal scheduling of MG generation
units as well as making possible demand side
participation in energy and reserve scheduling.

The main focus of this paper is on proposing an
integrated scheduling method in a MG and considering
demand side participation, renewable generation
uncertainty and EVs in energy and reserve operational
planning.

The rest of this paper is organized as following. In
section 2 the concept of the proposed model is
described. The model formulation is detailed in Section
3. Simulation results are given in Section 4 and the
paper is concluded in Section 5.

weather broadcast service

Distribution System/Market Operator

Jﬁeed.;\_
lbbe("dso/ . Electricily:. |
"?\5\ ™ i ' N
(d, ""1-3.\. price :

[Fle

|
l
/-‘ Demand Bidding/,
/_ 4 Buyback I

Distributed
generation
(WT, PV, FC,
MT,...)

Industrial &

Commercial load Residential Load

=+« = .p Scheduled
4— —  Offer
Fig. 1 MG operational scheduling data flow.

2 Microgrid Energy Management System (MEMS)

The MEMS manages and schedules all distributed
energy resources such as DGs, EVs and DR in its grid in
order to optimally operate the MG with minimum cost.
The MG operational planning data flow is shown in Fig.
1. The assumptions used in proposed model are
elaborated next.

Assumptions

e The MEMS is allowed to access day-ahead
electricity prices of the open market for
following 24-hour scheduling.

e The wind speed and solar radiation forecasts
and their forecast errors are received form
nearest weather broadcast service. The forecast
error is considered as a percentage of wind and
PV predicted output power.

e Electric vehicle owners submit their parked
time period and required stored energy for
departure time for next 24-hour to MEMS by
cell phone or internet portal.

In the proposed model, the load can participate in
both of energy and reserve scheduling and earn benefit
from reducing or shifting their consumption [23]. In real
world, it is hard to expect every residential load to take
part in demand response programs, and have interaction
with power market and system operator. In the daytime,
people may not be at home or all the residents are not
familiar with energy management procedures. So, it is
logical to use an automatic system to help residential
consumers in order to participate in energy management
programs. While it is usually difficult and confusing for
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the residential consumers to manually respond to prices
that are changing every hour, MEMS can help them to
manage their consumption with objectives of cutting
expenses and increasing welfare. In the proposed model,
every load type such as industrial, commercial and
residential loads can participate in demand response
programs.

In this paper, an incentive payment oriented demand
response scheme is presented for MG operational
planning. Incentive-based demand response programs
provide a more active tool for load-serving entities,
electric utilities, or grid operators to manage their costs
and maintain reliability. Incentive payment oriented
demand resources can be used as reserves in the day-
ahead scheduling and dispatch, or as capacity resources
in system planning. In this paper, three types of
incentive-based demand response programs are
considered for load management program that are listed
below [24, 25]:

e Demand bidding/buyback programs

e Ancillary services market programs

e  Direct load control

3 Model Formulation

The DERs scheduling program is run for 24-hour
day-ahead scheduling to calculate the hourly energy
requirement form the main grid for the next 24 hours.
Also, this scheduling will determine the generation
output of DGs and demand side participation as well as
EVs charge/discharge program. Moreover, it is
determined that which resources should provide the
reserve requirement for each hour.

The proposed model aims at minimizing the total
operation cost of MG. The objective cost function of
this model (OF) is sum of overall hourly operation cost
of MG which is given by (1):

Minimize,
T 1
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where C(i, t) is the bid form ith DG at tth period that
covers all fuel and maintenance costs as well as capital
cost. SU(i, t) is start-up cost of DG, CG(t) and RG(t)
are the purchased energy cost and sold energy revenue
from/to the main grid, respectively; N, is the total
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number of EVs; PR"(v,t) and Cpf, are power
discharge and discharge price of EV v in period t; In
this study, the period t duration is considered 1 hour. As
a result, the charge/discharge scheduling period length
is same as one in generation scheduling. IDE(l, t) and
10z (1, t) are the energy reduction amount in kWh and
price offer in $/kWh by Ith industrial or commercial
loads, respectively. The residential (home) energy
reduction by hth home is indicated with HDE (h, t), the
incentive payment for reduction is shown by HOg(t),
and the reserve commitment cost is indicated by RC.

The bid function of each DG should contain the fuel
and maintenance cost (a;) as well as a percentage of
investment cost (b;). The cost function of DG is given
by Eq. (2):

where PG(i, t) is the active power output of ith DG at
tth period of scheduling.

The MG in interconnected mode can exchange
power with the main grid. The cost and revenue of
purchasing and buying power from the upstream
network is calculated as follows:

CG(t) = Tapp(t) X ngp(t) 3

RG(t) = Tasp(t) X Pgsp(t) (4)
where Tapp(t) and Pg,,(t) are the purchased
electricity tariff and imported power from the main grid
at tth period, respectively. On the other hand, Tagp(t)
and Pgsp(t) are the sold electricity tariff and exported
power to the main grid at tth period, respectively. The
electricity tariffs which are used for power exchange
cost calculation are equal to hourly electricity price of
the main grid.

The reserve cost in the objective function is
calculated by Eq. (5):
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where IDR(L,t) and I0x(l,t) are the reserve amount
and offer from [th load, respectively; Rgy,(v,t) and
Y., (t) represent, respectively, the reserve provided by
EV v in period t and the price for reserve; HDR(h, t)
and HOg(t) are the residential load amount and price
offer for participation in reserve scheduling,
respectively. The other source of offering reserves is
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DGs with Rp;(i,t) and PRp;(t) that indicate reserve
amount and bid.

The start up cost of DG units is calculated as
follows:

SU(i,t) = Scost(i) x (u(i,t) —u(i,t — 1)) (6)

SU(i,t) =0 (7
where Scost(i) is the start up cost of ith DG, and u(i, t)
is a binary variable that shows the on-off state of DGs.
The constraints of the proposed model are:
e power balance equation

1 Ny
(Z PG(i, t)) + PGy — Pgsy + z PRy, £)
i=1 v=1
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L H
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where D(t) is the predicted demand of whole MG at tth
period;PRE" (v, t) and P& (v, t) are, respectively, power
discharge and charge of vehicle v in period t; Power
balance equation is the most important constraint in
operation planning. If the total generation be less than
consumption, system frequency drop occurs which is
undesirable.

e EVs constraints

In each period of scheduling, the EV charge and
discharge are not simultaneous:

X(wt)+Ywt) <1 vVvte{l,.., T} Vv 9
e{1,..,N,}; X,Y € {0,1}

where X(v,t) and Y (v, t) are, respectively, the binary
variables of EV v related to power discharge and charge
states in period t.

The battery energy balance for each vehicle should
be considered. The state of charge variable (E,(v,t))
represents the stored energy in the battery of vehicle v
at the end of period t. The energy consumption for
traveling in period t (E;’Tfp) has to be considered jointly
with the energy remained from the previous period and
the charge/discharge in the period [26].

E;(v,t) = E;(v,t — 1) + n$ x P} (v, t) — E;’r'gp

1
~p x PR (v,t) vt (10)
v

€f{1,..,T; vve{l,.., N,}

where n$ and n2 represent, respectively, the grid-to-
vehicle charging and vehicle-to-grid discharging
efficiency coefficients of EV v.

The discharge and charge limit for each EV
considering the battery discharge rate is given as
follows [27]:

PESM(w,t) + Rgy (v, t) < PRI, x X(v,t) Vit

e, Ty we{,.,n}

P&} (v, t) < PSS xY(v,t) Vvt (12)
ef{1,..,T}; vve{l,.., N}

where PJI% and PH%* are the maximum power
discharge and charge of EV v.

Depletion of EV battery up to a certain minimum
level (¥™™) and charging up to a maximum level
(P are ensured by Egs. (13) and (14) to prevent
loss of battery life [28].

E(v,t) ¥ vte{l,.., T} Vv (13)
ef{1,..,N,}

E,(v,t) >¥mr  vte{l,.., T} Vv (14)
ef{1,..,N,}

where W™ and ¥me* is defined based on the battery
capacity limit for each EV that are calculated as
follows:

[Pvmax — ¢£nax X E&‘ﬁ] Vv € {1, ...,Nv} (15)

min — gmin max
lluv - ¢)v X EBat,v

vv € {1, .., N,} (16)

where EZLY%, represents the maximum capacity of
battery of EV v; ¢4 and ¢" are, respectively, the
maximum and minimum percentage of battery capacity
considering battery life.

The vehicle battery discharge and charge limits
considering, respectively, the battery state of charge and
the battery capacity and the previous period stored
energy are given as follows [29]:

1 17
= x (PES*(0,0) + Rey (v, ) 4
v
<E(wt—-1) Vvt
ef{1,..,T}; vve{l,..,N,}
nS X PEM (v, t) < W —E(v,t —1) Vvt (18)
ef{1,..,T; vve{l,..,N,}
e DG unit output constraint
PG(i,t) = PGM™™ u(i,t) (19)
PG(i,t) + Rpg (i, t) < PG™™ . u(i,t) (20)

where PG™mand PGM™* are the minimum and
maximum limitation of ith DG output and u(i, t) shows
the on/off state of DG. The spinning reserve provided
by ith DG is shown by Rp; (i, t). The conventional DG
like micro turbine, diesel generator and fuel cell may
prepare spinning reserve, and WT and PV do not offer
reserve.

e Reserve requirement

The reserve requirement is determined based on
renewable generation forecast error as given by Eqg.
(21):
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L H 1
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where R(t) is the ‘minimum reserve requirement at
period t that is calculated by (22):

R(t) = a.PG(w,t) + B.PG(pv, t) (22)

where PG(w,t) and PG(pv,t) are output power from
wind turbine w and photovoltaic unit pv, a and g are
the forecast error coefficients which are used to
determine the uncertainty of output power of wind and
solar units which may unexpectedly increase or
decrease from their predicted values. These coefficients
are calculated based on historical data and the
geographical condition of MG.

e Load constraint

The load reduction should be constrained to
maximum amount of their offers. Also the scheduling
program should consider demands energy and reserve
participation, simultaneously. Constraints in Egs. (23)
and (24) show that sum of energy reduction and reserve
commitment of each individual load at every hour
should be lower or equal to maximum amount of their
offers.

IDE(1,t) + IDR(L, t) < IDM%(¢) (23)

1)

HDE(h,t) + HDR(h,t) < HDM*(¢) (24)
where IDMe*(t) and HDM%*(t) are the maximum
amount of reduction that are offered by industrial and
residential loads at period t, respectively.

The shiftable loads constraint which shows the time
limitation of their performance is given as follows:

Te (25)
Z d(t,H,ty) =mw

t=1s
HDA(t H, ty) = Z d(t, H, ty) . HDAM® (H, ty) (26)

where indices H and ty show the home number and
shiftable appliance, respectively. For shiftable load
scheduling, we define a binary variable d(t, H, ty) that
indicate on/off state of some home appliances ty that
can set their on/off time. s and te are the allowable
start and end time of these shiftable appliances working
period, and tw is the required time that they need to
perform their applications. HDA(t, H, ty) is the power
consumption of shiftable appliances ty at home H that
turn on at time t (vs <t < te) where the nominal
power of these appliances is shown by HDAM* (H, ty).

4 Case Study

The proposed operational planning model was tested
on a typical MG in low voltage distribution network.
This test system is depicted in Fig. 2. Two types of
loads are considered in MG: three residential and two

medium industrial workshops loads. A variety of DERs,
such as a proton-exchange membrane Fuelcell (FC), a
Microturbine (MT), a directly coupled wind turbine
(WT), and five Photovoltaic (PV) arrays are installed in
MG. It is assumed that all DGs produce active power at
a unity power factor. The technical aspects of MT and
FC are obtained from [30-31] and their cost function
calculation are described in [10].

The minimum and maximum operating limits of
DERs as well as their cost function coefficients are
presented in Table 1. Data of actual wind and PV
production are taken from [10]. Table 2 provides the
hourly energy price of a real electricity market [10]. The
total hourly load demand of the MG on a weekday is
presented in Table 3. The industrial loads price and
amount offers for load reduction is presented in Table 4.
The residential loads reduction offers for each house can
be found in Table 5. The WT and PV generation
forecast errors are taken as 20% of their hourly
forecasted outputs.

The case study considers 50 EVs, for which the
technical information has been obtained from vehicle
manufacturers. A Typical 10 kWh battery capacity for
most of EVs is selected [32]. Also, two other vehicle
types that are used in this case study are Nissan Leaf
with a battery capacity of 24 kWh and Citroen C-Zero
with a battery with 16 kWh [33, 34]. Typical battery
charge and discharge efficiency are assumed 90% and
95%, respectively [35]. In order to optimize EV battery
life, depletion of EV battery up to 85% of the rated
battery capacity is assumed.

A standard single-phase 220 V, 15 A socket is
assumed for charging point in home or work place. For
this analysis, a fixed charging power of 4 kKW is selected
because this is commonly available in most single-phase
residential households without having to reinforce
wiring [32, 36].

The above formulation has been implemented in
GAMS [37] using Mixed-Integer Linear Programming
(MILP) solver CPLEX on a VAIO computer with a 2.27
GHz core i5 processor and 4 GB of RAM. The
computation time for the proposed multi-objective
method is 3 sec.
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Fig. 2 Typical MG test system.
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Table 1 The technical and economical features of DERs.

units | Min Max Start- | b; c;
power | power | Up (Ect/kWh) | (Ect/h)
(kW) | (kW) cost
(Ect)
MT |15 100 0.14 4.37 85.06
FC 10 100 0.24 2.84 255.18
WT |0 30 - - -
PV1I | 0 5 - - -
PV2 |0 5 - - -
PV3 |0 5 - - -
PV4 |0 5 - - -
PV5 |0 5 - - -
Table 2 Hourly price of open market.
t 1 2 3 4 5 6
$/MWh | 226 | 19 139 |12 115 | 19.9
t 7 8 9 10 11 12
$/MWh | 23 38.3 | 149.8 | 400 400 | 400
t 13 14 15 16 17 18
$/MWh | 149 | 400 | 201 194.9 | 60 41.3
t 19 20 21 22 23 24
$§/MWh | 351 | 439 | 117.1 | 54 30 25.5

Table 3 Typical load data of the study case network.

Hour | Demand (kW) | hour | Demand (kW)

1 52 13 72

2 50 14 72

3 50 15 76

4 51 16 80

5 56 17 85

6 63 18 88

7 70 19 90

8 75 20 87

9 76 21 78

10 80 22 71

11 78 23 65

12 74 24 56

Table 4 The industrial load offer.
T | Workshop 1 Workshop 2
g | Maximum Price Maximum | Price
= | Reduction (Cent/ Reduction | (Cent/
(kW) kWh) (kW) kWh)

8 15 12 15 14
9 9 14 24 13
10 | 5 15 5 12
13 |7 9 - -
14 | 7 10 - -
15 | 21 11 16 12
16 | 7 8.5 19 10
17 | 10 10.5 25 12
18 | 4 12 18 105
19 | 15 10 10 10
20 | 28 11 18 13
21 | 10 10 21 10
22 |3 12 8 20
23 | 6 18 - -

Zakariazadeh & Jadid:
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Table 5 Residential load reduction offers (W).

Hour House 1 House 2 House 3
7 300 200 -

8 500 0 200
9 500 200 200
10 500 0 300
11 1000 1000 0

12 200 200 150
13 200 200 200
14 1000 0 1200
15 900 850 -

16 200 200 200
17 1000 900 850
18 1000 750 1000
19 200 150 200
20 1000 950 0

21 1000 750 800
22 950 - -

23 1000 500 1000
24 200 200 150

In order two evaluate the robustness of the proposed

method, the case study has been carried on in two cases:

e Case 1: Energy and reserve scheduling without

considering DR and EV charge/discharge
programs

e Case 2: Energy and reserve scheduling with

considering DR and EV charge/discharge
programs

In the first case, all reserve requirements should be
provided by MT and FC. Also, The EVs are considered
as load that should be charged enough in order to be
ready for scheduled driving pattern. The result of energy
resources scheduling in the first case has been shown in
Fig. 3. Also, the scheduled reserve capacity has been
illustrated in Fig. 4. In this case, all required reserves
have been provided by MT. So, a part of the MT
capacity should be kept for covering renewable
generation uncertainty. Also, for arranging spinning
reserve during hours 1-8, 23 and 24, the MT is forced to
be turned on in its minimum power output to be ready
(stand-by) to deliver spinning reserve.

The results of energy and reserve scheduling in the
second case has been shown in Figs. 5-8. As shown in
Fig. 5, due to high electricity prices, the imported power
from the main gird has been reduced during hours 9-16.
As shown in Figs. 6 and 7, during hours 9-16 load
reductions and EVs discharging have been scheduled in
order to reduce the imported power from the main grid.
EVs have been scheduled to be charged during hours 2-
7, 18-20, 23 and 24 in which the electricity prices are
relatively low. The scheduled reserve capacity in the
second case has been illustrated in Fig. 8. Comparing
with Fig. 4, the MT capacity has been released to
provide energy instead of reserve. Also, EVs and loads
have provided the most reserve capacity in the second
case.
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Moreover, the results emphasize that the demand
response during the hours with high energy price is
higher than during low energy price hours. That means
the MEMS intends to purchase load curtailment when
the hourly electricity price is high; in some hours that
the electricity prices are higher than DGs offer price,
MEMS prefers to use all capacity of DGs for delivering
energy.
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Fig. 5 Scheduled energy in case 2.
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Fig. 7 Charge/discharge program of EVs in case 2.
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Fig. 8 Scheduled reserve in case 2.

Table 6 compares the operational cost of MG in the
cases 1 and 2. The result evidenced that EVs
charge/discharge program as well as demand side
participation in energy and reserve has been reduced the
total operation cost of MG.
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Table 6 Cost comparison between two cases.

Cost ($) Main | DGs DR EV Total
grid Energy | Reserve | Energy | Reserve | Discharge | reserve
Case 1 43,972 | 17,819 | 342 - - - - 62,133
Case 2 39,298 | 8,879 58 1,477 103 1,854 115 51,784
Table 7 Cost of scheduling with an without participation of loads and EVs in providing reserve.
Cost ($) Main DGs DR EV Total
grid Energy | Reserve Energy | Reserve Discharge | reserve
Without providing | 59 15, | 9619 | 342 1498 | - 1,941 i 52,562
reserve
with ~providing | 59598 | gg79 | 58 1477 | 103 1,854 115 51,784
reserve
In order to evaluate the effect of loads and EVs [2] A. Hajizadeh, “Robust Power Control of
participation in providing the reserve capacity, the Microgrid Based on Hybrid Renewable Power
energy and reserve scheduling has been carried out with Generation  Systems”, Iranian Journal of
and without considering DR and EVs participation in Electrical & Electronic Engineering, Vol. 9, No.
reserve scheduling. The result of the comparison has 1, pp. 44-57, Mar. 2013.
been shown in Table 7. As shown in Table 7, while the [3] Office of Electricity Delivery and Energy
loads and EVs have not been allowed to participate in Reliability, U.S. Department of Energy, “The
reserve scheduling, all reserve requirement have been smart grid: An introduction”, 2010 [Online].
provided by DGs. In this case, a part of DGs capacity Available: http://www.oe.energy.gov/1165.htm.
should be allocated to reserve and, as a result, they lose [4] K. Clement-Nyns, E. Haesen and J. Driesen, “The
the opportunity to provide energy in during the hours impact of charging plug-in hybrid electric
when the electricity prices are high. Moreover, due to vehicles on a residential distribution grid”, IEEE
providing reserve capacity, the MT should be keep turn- Transaction on Power System, Vol. 25, No. 1, pp.
on in all hours in order to be in stand-by to provide 371-380, Feb. 2010.
reserve. It has also increased the total operation cost. [5] A. Zakariazadeh, S. Jadid and P. Siano, “Multi-
The results evidenced that the participation of demand objective scheduling of electric vehicles in smart
side and EVs in providing reserve reduced the total distribution system”, Energy Conversion and
operation cost of MG. On the other hand, while the EVs Management, VVol. 79, pp. 43-53, Mar. 2014.
and loads are taken into account in reserve scheduling, [6] Z. Fan, “A distributed demand response algorithm
the DGs capacity will be released in order to provide and its application to PHEV charging in smart
energy. So, the total operation cost reduced. grids”, IEEE Trans. Smart Grid, Vol. 3, No. 3,
pp. 1280-1290, Sep. 2012.
5 Conclusion [71 C. Yijia, T. Shengwei, L. Canbing, Z. Peng, T.
A novel integrated DERs scheduling approach for a Yi, Z. Zhikun and L. Junxiong, “An optimized
MG was proposed in this paper. This approach allows EV charging model considering TOU price and
responsive loads and EVs owners to participate in both SOC curve”, IEEE Transaction on Smart Grid,
energy and reserve operational scheduling. Demand Vol. 3, No. 1, pp. 388-393, Mar. 2012.
bidding/buyback programs, ancillary service market [8] W. Kempton and J. Tomic, “Vehicle-to-grid
program and direct load control are considered as power fundamentals: Calculating capacity and net
demand response programs. The results evidenced that revenue”, Journal of Power Sources, Vol. 144,
participating of loads and EVs in energy and reserve No. 1, pp. 268-279,June 2005.
operational planning reduced total operational cost of [91 J. Mitra, M. R. Vallem and S. B. Patra, “A
MG. In addition, the renewable uncertainty will also be probabilistic search method for optimal resource
covered by reserve scheduling through the operational deployment in a microgrid”, presented at the 9th
planning program. Int. Conf. Probabilistic Methods Applied to
Power Systems, KTH, Stockholm, Sweden, pp.
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