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Abstract: Class-AB circuits, which are capable of dealing with currents several orders of 
magnitude larger than their quiescent current, are good candidates for low-power and high 
slew-rate analog design. This paper presents a novel topology of a class AB Flipped 
Voltage Follower (FVF) that has better slew rate and the same power consumption as the 
conventional class-AB FVF buffer previously presented in literature. It is thus suitable for 
low-voltage and low-power stages requiring low bias currents. These buffers have been 
simulated using 0.5 µm CMOS Technology models provided by IBM. The buffer consumes 
16 µA from a 0.9 V supply and has a bandwidth of 52 MHz with an 18 pF load. It has a 
slew rate of 10.3 V/µs and power consumption of 36 µw. 
 
Keywords:Class-AB Circuits, CMOS Integrated Circuits, Flipped Voltage Follower, High 
Slew Rate Buffers,Level Shifting Techniques. 

 
 
 
1 Introduction1 
Voltage follower which is here denoted as VF, are 
widely used as output stages of opamps or in standalone 
configuration for signal conditioning, to accurately 
force an input voltage to an output load with both high 
input and low output impedance [1]. The conventional 
configuration of a VF is the voltage follower shown in 
Fig. 1-a. It has an output impedance of Rout = 1/gm (~ 2 
kΩ) [2] and positive slew rate SR = ID2/CL. Notation CL 
is the load capacitance, ID2, the drain current of 
transistor M2 and gm, the small signal transconductance. 

This VF is biased on the source side with a constant 
current source (M2) which ideally keeps a constant 
gate-to-source voltage in M1. This causes output 
voltage variations to follow the input voltage with a gate 
to source DC level shift. In practice this VF suffers from 
some problems like, not enough low output impedance, 
dependence of drain current of M1 on Iout and 
nonsymmetrical slew rate. 

The FVF [3] shown in Fig. 1-b is an improvement to 
a conventional VF. The FVF has a constant current 
through transistor M1, independent on the output 
current. Because of the shunt feedback [4], the output 
impedance is decreased to: 
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It is much smaller than Rout of conventional VF. The 
voltage gain is almost unity: 
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This is bigger than the voltage gain of conventional 
VF. The circuit in Fig. 1-b is able to source a large 
current but its sinking capability is limited by the drain 
current of M3. 

To overcome this problem, circuit in Fig. 1-c [5-7] is 
used. Under quiescent conditions, every transistor is in 
saturation region and no current is delivered to the load. 
Neglecting second order effects, transistor M4 copies 
the drain current of transistor M1. Therefore the total 
current taken from the supply voltage is 2Ib ( = 2ID3) 
which increases the power consumption of the circuit. 

In this paper a very simple, low-voltage class-AB 
structure is proposed which is able to take current from 
supply sources only when the load requires it, so the 
power consumption decreases, and the slew rate 
increases, thus it can be used in low-voltage and low-
power amplifiers as a level shifter [8]. 

The proposed structure has been simulated using the 
models of the IBM CMOS 0.5 µm technology, in order 
to compare its performance with the other buffers in 
terms of settling time, bandwidth, output impedance, 
power consumption and total harmonic distortion. 
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increases to 72 µW, which is 30 µW larger than power 
consumption of circuit Fig. 5. Note that since in these 
circuits, transistors are operation in strong inversion 
they are not capable to operate under ultra-low-power 
application [13]. The bandwidth of second proposed 
circuit is larger than other buffer configurations 
presented in literature except the buffer Fig. 1-c. Thus it 
can be used in high frequencies. Also it can be seen that 
the second proposed circuit has the largest FOM among 
Fig. 3-d and Fig. 1-c. 

5 Conclusion 
A new class-AB unity-gain buffer based on the 

Flipped Voltage Follower (FVF) has been proposed. 
This circuit can be operated at a low voltage and low 
power. With respect to other class-AB stages based on 
the FVF topology, it has superior slew rate with low 
power consumption. This novel buffer has also low 
output impedance. The characteristics of the proposed 
circuit were validated by simulations. 
 

 
 
Table 2 Comparison of buffers. 

Circuit Technology Voltage 
Supply 

ID 
(µA) 

P 
(µw) 

BW SR+

(V/µs)
SR-

( V/µs) FOM Rout 
(Ω) 

Gain 
(dB) THD HD2 

(dB)
HD3 
(dB) 

Fig. 5 
Second 

proposed 
circuit 

0.5 µm 0.9 V 16 36 76 MHz 
CL=10 pF 10.3 10.3 0.28 210 -0.35 

-50 dB 
200 mVPP 

1 MHz 
-53 -54 

Fig. 3-d 
First 

proposed 
circuit 

0.5 µm 0.9 V 16 18 68 MHz 
CL=10 pF 2.7 5.4 0.23 489 -0.2 

-45 dB 
200 mVPP 

1 MHz 
-45 -60 

Fig. 1-c 
Class-AB [7] 0.5 µm 1.5 V 20 36 87 MHz 

CL=10 pF 6.1 6.1 0.17 220 -0.2 
-55 dB 

200 mVPP 
1 MHz 

-56 -62 

Buffer [1] 65 nm 1.2 V 10 - 100 MHz
CL=2 pF - - - 760 -0.4 - - - 

FVF [3] 65 nm 1.2 V 7.8 - 30 MHz 
CL=2 pF - - - 540 -0.6 

 - - - 

SDP [5] 0.5 µm 3 V 30 - 11 MHz 
CL=10 pF - - - 2K - 

-59 dB 
300 mVPP 

2 MHz 
- - 

DFVF [5] 0.5 µm 3 V 30 - 70 MHz 
CL=10 pF - - - 40 - 

-52 dB 
300 mVPP 

2 MHz 
- - 

CASDPFVF 
[5] 0.5 µm 3 V 30 - 70 MHz 

CL=10 pF - - - 0.5 - 
-52 dB 

300 mVPP 
2 MHz 

- - 
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