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Abstract: Steer-by-wire is the electrical steering systems on vehicles that are expected with 
the development of an optimal control system can improve the dynamic performance of the 
vehicle. This paper aims to optimize the control systems, namely Fuzzy Logic Control 
(FLC) and the Proportional, Integral and Derivative (PID) control on the vehicle steering 
system using Imperialist Competitive Algorithm (ICA). The control systems are built in a 
cascade, FLC to suppress errors in the lateral motion and the PID control to minimize the 
error in the yaw motion of the vehicle. FLC is built has two inputs (error and delta error) 
and single output. Each input and output consists of three Membership Function (MF) in 
the form of a triangular for language term "zero" and two trapezoidal for language term 
"negative" and "positive". In order to work optimally, each MF optimized using ICA to get 
the position and width of the most appropriate. Likewise, in the PID control, the constant at 
each Proportional, Integral and Derivative control also optimized using ICA, so there are 
six parameters of the control system are simultaneously optimized by ICA. Simulations 
performed on vehicle models with 10 Degree Of Freedom (DOF), the plant input using the 
variables of steering that expressed in the desired trajectory, and the plant outputs are lateral 
and yaw motion. The simulation results showed that the FLC-PID control system optimized 
by using ICA can maintain the movement of vehicle according to the desired trajectory 
with lower error and higher speed limits than optimized with Particle Swarm Optimization 
(PSO). 
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1 Introduction1 
In the longitudinal direction of movement of the vehicle 
should be arranged to always be right in the path 
specified, if not on the trajectory, it means there a 
mistake in the direction of the lateral motion. To 
maintain or minimize the error, it would require a 
control on the lateral motion [1, 2]. Likewise when 
movement the vehicle is turning, it will tend to occur 
the longitudinal force difference between the right and 
left wheels resulting in a vehicle will experience the 
yaw motion which pinned on the Centre of Gravity 
(COG), to reduce the error of the yaw motion then the 
vehicle requires the yaw motion control [3]. On the 
condition of vehicle is moving in the longitudinal 
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direction and then veer, so the movement of vehicle 
dynamics can be represented as lateral and yaw motion 
[4]. 

The Computing technology has a lot to provide soft 
computing to perform control functions and 
optimization. Currently, the vehicle steering control 
system based on behaviors become the main alternative 
to the use of the steering control system [5]. Some 
Artificial Intelligence (AI) techniques have been widely 
applied to the control and optimization systems. Fuzzy 
Logic including a technique that is widely applied to 
vehicle steering control [6–9], but to get the parameters 
that are required by a Fuzzy Logic Control (FLC) is not 
an easy job. Soft computing offers a combination and 
integration of more than one technique Artificial 
Intellegence aiming to tune the fuzzy parameters 
automatically, among others, Fuzzy adaptive [8], 
Genetic Fuzzy [6] and Fuzzy-Particle Swarm 
Optimization [9]. 

In 1995 has developed an optimization method 
based on swarm intelligence, called behavioral inspired 
algorithm as an alternative of genetic algorithm [10]. In 
its application, Particle Swarm Optimization (PSO) 
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becomes an optimization method that simpler and has 
the ability to achieve a faster convergence than Genetic 
Algorithm (GA), because this method works only 
depends on the function of speed and position [11]. 

On the other side, in 2007 introduced the 
evolutionary algorithm inspired by imperialistic 
competition, subsequently it was called the Imperialist 
Competitive Algorithm (ICA). The ICA applications in 
the optimization of a mathematical function can provide 
the results of the optimization process better than using 
PSO and GA methods [12–14], as well a combination of 
the fuzzy controller optimized by the ICA has better 
performance than the expert controller [15]. 

In this paper was developed an AI-based control 
system that applied to the model fully automatic steer-
by-wire system that represented on the vehicle model 
with 10 Degree Of Freedom (DOF) [9, 16]. DOF are the 
vector movement of the vehicle dynamics that describes 
the state of the physical dynamics of vehicle, where the 
10 DOF is meant is, 10 mathematical equations of 
Newtonian force equation for the longitudinal, lateral, 
yawing, pitching, rolling, bouncing and the vertical 
movement of each wheel. The strategy of control 
system that was developed, consisting of two stages of 
control, in cascade, namely, the first is FLC as a major 
control on the lateral motion and the second is 
Proportional-Integral-Derivative controller (PID) as an 
advanced control on the yaw motion. To obtain the 
parameters of the optimal control system on the FLC 
and PID used an optimization method of ICA. The 
expected results of this simulation on active steering 
control with the use of FLC and PID control tuned by 
ICA can improve vehicle dynamic performance. 
 
2 Vehicle Dynamics Model 

Based on the theory of vehicle dynamics, vehicle has 
two major functions in controlling the movement of 
vehicles, namely control lateral and control longitudinal 
[17], but to further represent the whole movement of the 
vehicle either vertical or horizontal direction, the 
models built in this paper uses a vehicle model with a 
10-DOF that consists of a 7-DOF vehicle ride model, 

Fig. 1, and 3-DOF vehicle handling model, Fig. 2. 
Vehicle ride models expressed in 7 of mathematical 

equations [16], consists of forces equations on the 
vehicle body (sprung mass single) that includes freedom 
of movement; vertical movement of the vehicle body 
(heaving), nodding movement of the vehicle body 
(pitching), the movement of swaying from side to side 
of the vehicle body (rolling) and the vertical movement 
of each wheel (four unsprung masses) [16, 18, 19]. 

Bouncing of the car body (Zs) is represented as: 
݉௦ ሷܼ௦ ൌ െ2൫ܭ௦,௙ ൅ ௦,௥൯ܼ௦ܭ െ 2൫ܥ௦,௙ ൅ ௦,௥൯ܥ ሶܼ௦ 

൅2൫ܽܭ௦,௙ െ ߠ௦,௥൯ܥܾ ൅ 2൫ܽܥ௦,௙ െ ሶߠ௦,௥൯ܥܾ ൅  ௦௙ܼ௨,௙௟ܭ
൅ܥ௦,௙ ሶܼ௨,௙௟ ൅ ௦௙ܼ௨,௙௥ܭ ൅ ௦,௙ܥ ሶܼ௨,௙௥ܭ௦௥ܼ௨,௥௟ ൅ ௦,௥ܥ ሶܼ௨,௥௟ 
൅ܭ௦௥ܼ௨,௥௥ ൅ ௦,௥ܥ ሶܼ௨,௥௥ ൅ ௣௙௟ܨ ൅ ௣௙௥ܨ ൅ ௣௥௟ܨ ൅  ௣௥௥ܨ

(1) 

The Pitching of the car body (θ) is: 
ሷߠ௬௬ܫ ൌ 2൫ܽܭ௦,௙ െ ௦,௥൯ܼ௦ܭܾ ൅ 2൫ܽܥ௦,௙ ൅ ௦,௥൯ܥܾ ሶܼ௦ 

െ2൫ܽଶܭ௦,௙ െ ܾଶܭ௦,௥൯ߠ െ 2൫ܽଶܥ௦,௙ െ ܾଶܥ௦,௥൯ߠሶ  
         െܽܭ௦௙ܼ௨,௙௟ െ ௦,௙ܥܽ ሶܼ௨,௙௟ െ ௦௙ܼ௨,௙௥ܭܽ െ ௦,௙ܥܽ ሶܼ௨,௙௥ 
         ൅ܾܭ௦௥ܼ௨,௥௟ ൅ ௦,௥ܥܾ ሶܼ௨,௥௟ ൅ ௦௥ܼ௨,௥௥ܭܾ ൅ ௦,௥ܥܾ ሶܼ௨,௙௥ 

െ൫ܨ௣௙௟ ൅ ௣௙௥൯݈௙ܨ ൅ ൫ܨ௣௥௟ ൅  ௣௥௥൯݈௥ܨ

(2) 

Rolling of the car body (ϕ) is expressed as: 
௫௫ܫ ሷ߮ ൌ െ0.5ݓଶ൫ܭ௦,௙ ൅ ௦,௥൯߮ܭ െ ௦,௙ܥଶ൫ݓ0.5 ൅ ௦,௥൯ܥ ሶ߮  

൅0.5ܭݓ௦,௙ܼ௨,௙௟ ൅ ௦,௙ܥݓ0.5 ሶܼ௨,௙௟ െ  ௦,௙ܼ௨,௙௥ܭݓ0.5
     െ0.5ܥݓ௦,௙ ሶܼ௨,௙௥ ൅ ௦,௥ܼ௨,௥௟ܭݓ0.5 ൅ ௦,௥ܥݓ0.5 ሶܼ௨,௥௟ 

        െ0.5ܭݓ௦,௥ܼ௨,௥௥ െ ௦,௥ܥݓ0.5 ሶܼ௨,௥௥ ൅ ൫ܨ௣௙௟ ൅ ௣௥௟൯ܨ
ݓ
2  

െ൫ܨ௣௙௥ ൅ ௣௥௥൯ܨ
ݓ
2  

(3) 

Vertical Direction for each wheel is: 
݉௨ ሷܼ௨,௙௟ ൌ ௦,௙ܼ௦ܭ ൅ ௦,௙ܥ ሶܼ௦ െ ߠ௦,௙ܭܽ െ ሶߠ௦,௙ܥܽ  
        ൅0.5ܭݓ௦,௙߮ ൅ ௦,௙ܥݓ0.5 ሶ߮ െ ൫ܭ௦,௙ ൅  ௧൯ܼ௨,௙௟ܭ
        െܥ௦,௙ ሶܼ௨,௙௟ ൅ ௧ܼ௥,௙௟ܭ െ  ௣௙௟ܨ

(4) 

݉௨ ሷܼ௨,௙௥ ൌ ௦,௙ܼ௦ܭ ൅ ௦,௙ܥ ሶܼ௦ െ ߠ௦,௙ܭܽ െ ሶߠ௦,௙ܥܽ  
െ0.5ܭݓ௦,௙߮ െ ௦,௙ܥݓ0.5 ሶ߮ െ ൫ܭ௦,௙ ൅  ௧൯ܼ௨,௙௥ܭ

          െܥ௦,௙ ሶܼ௨,௙௥ ൅ ௧ܼ௥,௙௥ܭ െ  ௣௙௥ܨ

(5) 

݉௨ ሷܼ௨,௥௟ ൌ ௦,௥ܼ௦ܭ ൅ ௦,௥ܥ ሶܼ௦ ൅ ߠ௦,௥ܭܾ ൅ ሶߠ௦,௥ܥܾ  
൅0.5ܭݓ௦,௥߮ ൅ ௦,௥ܥݓ0.5 ሶ߮ െ ൫ܭ௦,௥ ൅  ௧൯ܼ௨,௥௟ܭ
– ௦,௥ܥ ሶܼ௨,௥௟ ൅ ௧ܼ௥,௥௟ܭ െ  ௣௥௟ܨ

(6) 

݉௨ ሷܼ௨,௥௥ ൌ ௦,௥ܼ௦ܭ ൅ ௦,௥ܥ ሶܼ௦ ൅ ߠ௦,௥ܭܾ ൅ ሶߠ௦,௥ܥܾ  
െ0.5ܭݓ௦,௥߮ െ ௦,௥ܥݓ0.5 ሶ߮ െ ൫ܭ௦,௥ ൅  ௧൯ܼ௨,௥௥ܭ
െܥ௦,௥ ሶܼ௨,௥௥ ൅ ௧ܼ௥,௥௥ܭ െ  ௣௥௥ܨ

(7) 

Vehicle handling models expressed in 3 of 
mathematical equation [16], consists of forces equations 
on the movement of the car body, namely the lateral, 
longitudinal and yaw motion. Lateral motion and 
longitudinal motion is movement along the x-axis and 
y-axis are expressed in lateral acceleration (Ay) and 
longitudinal acceleration (Ax) so that the lateral motion 
and the longitudinal motion can be obtained by double 
integration of the lateral and longitudinal acceleration 
[16, 20, 21]. 
 

 
 

Fig. 1 Vehicle ride model. 
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Fig. 2 Vehicle handling model. 
 
 

Lateral and longitudinal acceleration are expressed 
as follows: 

ܽ௬ ൌ ቌ
ߜݏ݋௬௙௟ܿܨ െ ߜ݊݅ݏ௫௙௟ܨ ൅ ߜݏ݋௬௙௥ܿܨ

െܨ௫௙௥ߜ݊݅ݏ ൅ ௬௥௟ܨ ൅ ௬௥௥ܨ

ቍ ݉௧൘             (8) 

 

ܽ௫ ൌ ቌ
ߜݏ݋௫௙௟ܿܨ െ ߜ݊݅ݏ௬௙௟ܨ ൅ ߜݏ݋௫௙௥ܿܨ

െܨ௬௙௥ߜ݊݅ݏ ൅ ௫௥௟ܨ ൅ ௫௥௥ܨ

ቍ ݉௧൘        (9) 

 
An angular movement of the vehicle based on the 

vertical axis is called a yaw motion (ݎ) [13] which can 
be obtained by the integration of r and .r  
ሷݎ ൌ

1
௭ܬ

ቂ
ݓ
2 ߜݏ݋௫௙௟ܿܨ െ

ݓ
2 ߜݏ݋௫௙௥ܿܨ ൅

ݓ
2 ௫௥௟ܨ െ

ݓ
2  ௫௥௥ܨ

    ൅ ௪
ଶ

ߜ݊݅ݏ௬௙௟ܨ െ ௪
ଶ

ߜ݊݅ݏ௬௙௥ܨ െ ݈௥ܨ௬௥௟ െ ݈௥ܨ௬௥௥ 
    ൅݈௙ܨ௬௙௟ܿߜݏ݋൅݈௙ܨ௬௙௥ܿߜݏ݋െ݈௙ܨ௫௙௟ߜ݊݅ݏെ݈௙ܨ௫௙௥ߜ݊݅ݏ 
    ൅ܯ௭௙௟ ൅ ௭௙௥ܯ ൅ ௭௥௟ܯ ൅  ௭௥௥ሿܯ

(10) 

Definitions of variables are shown in Table 1. 
Based on the tenth of mathematical equation above, 

namely 7 DOF of the ride models and 3 DOF of 
handling models that are mathematically linked using 
Calspan tire models [8, 22, 23] then was built vehicles 
models using MATLAB-Simulink software as shown in 
Fig. 3. 

The design of the vehicle model with 10 DOF that 
focuses on setting the direction of the front wheels of 
the vehicle as the output of a plant and the plant input in 
the form variations of steer angle (δ) of the steering 
wheel. Plant output in the form of the front wheels 
direction of vehicles stated in the three movements, 
namely lateral motion (y), the longitudinal motion (x) 
and yaw motion (r). The yaw motion will affect the 
moment of inertia around the z-axis (Js), changes in roll 
and pitch angles on COG (θ and φ) [9], so it will affect 
the whole of force in the z-axis direction (bounching, 
pitching, rolling and all the vertical direction of each 
wheel). 
 
 

Table 1 Definitions of variables. 

Variables Definitions 
Zs sprung mass displacement at body CoG 

sZ  sprung mass velocity at body CoG 

sZ  sprung mass acceleration at body CoG 

ijuZ ,  unsprung masses displacement 

ijuZ ,  unsprung masses velocity 

ijrZ ,  unsprung masses acceleration 

ijrZ ,  road profiles at each tyres 

Ks,ij suspension spring stiffness each tyres 

ijsC ,  suspension damping each tyres 

xxI  roll axis moment of inertia   

yyI  pitch axis moment of inertia   

w wheel base of sprung mass   

ijF  suspension force each corner 

sm  sprung mass weight 

tm  total vehicle mass 

zijM  self-aligning moments 

pijF  pneumatic actuator forces at each corner 

xijF  tire forces in longitudinal direction  

yijF  tire forces in lateral direction 

i indicating front or rear 
j  indicating left or right 
Jz

 moment of inertia around the z-axis 
δ steering angle  
a distance between front of vehicle and CoG 
b distance between rear of vehicle and CoG  
θ pitch angle at body centre of gravity 
ሶߠ pitch rate at body centre of gravity 
ሷߠ roll acceleration at body centre of gravity 
߮ roll angle at body centre of gravity 

ሶ߮  roll rate at body centre of gravity 
ሷ߮  roll acceleration at body centre of gravity  

 

 
Fig. 3 Vehicle Model in MATLAB-SIMULINK. 
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Fig. 4 The Control and Optimization Structure for automatic steering on vehicle model. 

 
3 Optimization of Control Systems 

Steering control system (active steer) of the vehicle 
that was built in this paper uses two controllers in a 
cascade [16, 24, 25], FLC as the main control and PID 
control as the auxiliary control. This control strategy is 
needed to control the direction of the front wheels to fit 
the desired vehicle trajectory. Block diagram of the 
control strategy that is built for the active steering 
control simulation are shown in Fig. 4. The role of 
control systems are; FLC is used to suppress the error y 
(3) among; lateral motion y (2) against the desired 
trajectory (1) corresponding to the longitudinal motion 
coordinates x, whereas the PID the control is used to 
reduce errors, speed up risetime, and reduce overshot / 
undershot among yaw motion (5) against the setting 
point which is the output of the FLC (4). The ideal 
condition of fuzzy control results (output FLC) is 
vehicle movement no longer has a lateral motion y, so 
that the output FLC will be setting point on PID control 
to minimize the yaw motion error (6). Both the control 
systems will work optimally if supported by the design 
of composition the optimal parameter values, in this 
paper, the values of the parameter at FLC and PID 
control is determined through the optimization process 
by ICA. 
 

3.1  Fuzzy Logic Controller (FLC) 
FLC is designed using two inputs, namely error (ER) 

as the difference of the required values against the 
actual value, delta error (DE) as the velocity error, and a 
control output (OT) as a control action. In this way, the 
control action expected to produce a close loop system 
which has a response with minimum overshoot and fast 
rise time. 

The main structure of the FLC, consisting of: crisp 
variables fuzzification, fuzzy rules and defuzzyfication 
[26]. Fuzzification of crisp variable is the conversion 

value of the input and output of the control system into 
a fuzzy variable by using the technique of membership 
function (MF). MF is a function to express the 
membership degree of fuzzy. Because of FLC 
functioned only to suppress the error lateral motion 
which vary linearly around the zero, then the mapping 
of the fuzzy input to the membership degree of fuzzy is 
described as a straight line consisting of two states, 
namely linear-up and linear-down. In the linear-up, 
increase in fuzzy set began in domain value that have 
degree of membership of zero (0) moves up to the right 
side toward the domain value that have higher degree of 
membership up to 1, while the linear-down, straight line 
began from the highest degree of membership (1) on the 
left side move downwards to the domain value that have 
a lower degree of membership until 0. Triangle 
membership of function is a curve which is basically a 
combination of the two straight lines, while the 
trapezium curve is essentially such as a triangular shape, 
it's just that there are a few points that have membership 
of value are 1. Therefore, in the MF that used in this 
paper are a MF in the form of a triangle (Triangular 
shape) and trapezium (trapezoidal shape). 

Fuzzy rules are a set of rules that are grouped into 
the rule base for decision making (the inference process) 
of the required control action. Each rule base on the 
control input (error and delta error) and the control 
output of the FLC consists of three MF with language 
term, negative (N), Zero (Z), Positive (P). Thus the 
number of the required rule base is 9 rules, and having 
regard to the response curve of the plant, it can be 
arranged into rule base with the following rationale: 

- If ER="P" and DE="Z", then it is necessary to a 
positive control action, OT="P" in order to the response 
immediately to the set-point. 
 
 

ΔER, ΔDE, ΔOT

Imperialist Competitive Algorithm 
ΔER, ΔDE, ΔOT, ΔKp, ΔKi, ΔKd 

PI+ - + -du/dt 

                x 
Steering  
Input (δ)    y 

               yaw x y yaw 

Look up table 
x–y Trajectory 

Error y 

Error yaw 

ITAE 
Criteria 

FLC Control

PID Control

Initialization Empires 
(ΔER, ΔDE, ΔOT, Kp, Ki, Kd) 

ΔKp, ΔKi, ΔKd

Vehicle Model 
With 10-DOF 

  1 

  2 

 3 
 4

  5

 6  7 
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Fig. 7 Change the width and center of the membership function. 
 
 

Each individual of an empire is a country. There are 
two kinds of countries; namely the countries of the 
colony and the imperialist countries that collectively 
forming an empire. During the competition, a weak 
empire will collapse and the stronger will be the ruler of 
the colony. Imperialistic competition will reach 
convergent if there is only one empire and its colonies 
are in the same position and have the same cost as the 
imperialist [12, 13]. 

In search of the optimal value, the optimization steps 
using ICA are as follows: 

Step 1. Creation of Initial Empires. 
Parameters that will be optimized are 6 parameters, 

consists of three parameters required by FLC (ΔER, 
ΔDE, and ΔOT) and three parameters required by PID 
control (Kp, Ki and Kd). Optimization preceded by 
generating the initial population a number of 50 
countries, then determined the 8 countries as the initial 
empires and the remaining are called colonies were 
distributed proportionally in each empire. 

Then the initial countries evaluated at the plant of 
active steering control system for sorting out the cost, in 
ascending order, in this paper the cost stated in the error 
of lateral motion which is measured using the 
minimizing of Time-weighted Integral Absolute Error 
(ITAE) criterion [27] as follows: 
ܧܣܶܫ ൌ ׬ ஶݐ݀|ሻݐሺ݁|ݐ

଴                         (16) 
e(t) is the error as a function of time between the 

reference against the actual of lateral motion. The total 
error is the total cost of colonies on each imperialist 
who will be the strength of every empire where the less 
the cost is, the more is the power. 

Step 2. Moving the colonies towards the relevant 
imperialist. 

In the first decade, all colonies assimilation and 
revolution against imperialist. The direction of 
movement from the colony towards imperialist is a 
vector, expressed as a random variable x with a uniform 
distribution: 
,ሺ0ܷ~ݔ ߚ ൈ ݀ሻ               (17) 
,ߛሺെܷ~ߠ  ሻ               (18)ߛ
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 is a value greater than 1, causing the colony ߚ
approached to imperialist and d is the distance vector 
between the colony into imperialist. θ indicates a new 
direction with the change angle γ that can be determined 
randomly. In this paper, β and γ are determined 
respectively 3 and 0.5. 

Step 3. The exchange of imperialist position with a 
closest colony. 

When the colony moving closer into imperialists, the 
colony may reach a position with the smallest cost. In 
this situation, there will be an exchange position, the 
imperialists will be move to the position of closest 
colony and conversely, then this algorithm will be 
repeated with the conditions on the new imperialist 
position, colony started again to move closer into 
imperialists. At this stage, the position of each colony 
will be evaluated again on plant of active steering 
control system to get a new cost by using ITAE. 

Step 4. Calculating the total cost ܶܥ௡ of all empires. 
௡ܥܶ ൌ  ௡ሻݐݏ݈݅ܽ݅ݎ݁݌݉ܫሺ ݐݏ݋ܥ
            ൅ ߦ ݉݁ܽ݊ሼݐݏ݋ܥሺܿ݁ݎ݅݌݉݁ ݂݋ ݏ݁݅݊݋݈݋ሻሽ      (19) 

The ξ used in this paper is 0.02. 
Step 5. Imperialistic Competition. 
Determine the total power ܰܶܥ௡ (Normalized total 

cost ܶܥ௡) from the each empire. 
௡ܥܶܰ ൌ ௡ܥܶ െ  ௜ሽ           (20)ܥሼܶݔܽ݉

Empire which have less power will be eliminated in 
imperialist competition and their colonies will be 
divided into the several other empire. 

Step 6. Termination of iterations. 
Iteration will be stopped when only staying one empire, 
but when it was still more than one empire, the process 
is repeated back to step 2. 
 
4 Simulation Results and Discussion 

Simulation of optimal control on the lateral and yaw 
motion in the steering system of the vehicle begins with 
optimize the parameters of FLC and PID control system 
using ICA, then the simulation results compared against 
the use of PSO optimization method as has been done 
on previous paper [16]. This comparison is done in 
order to get smaller errors that will be used as a basis for 
advanced research involving the hardware on the 
vehicle steering system, called Hardware In the Loop 
Simulation (HILS). Testing the steering control system 
by HILS aims to obtain more accurate result and real. 

The parameters used in the ICA: 
Number of initial countries    = 50; 
Number of Initial Imperialists   = 8; 
Number of Decades      = 50; 
Revolution Rate       = 0.3; 
Assimilation coefficient     = 3; 
Assimilation angle coefficient   = 0.5; 
Zeta          = 0.02; 
Damp Ratio        = 0.99; 
Uniting Threshold      = 0.02; 

The parameters used in the PSO: 
Number of particles      = 50; 
Maximum iteration      = 50; 
social constant (c1)      = 1; 
cognitive constant (c2)    = 1; 
Inertia value (W)      = 0.5; 
Learning rates (L1,2)      = 0.5; 

The parameters of the vehicle model are used as 
shown in Table 3. 

Optimizations that has been done using ICA can 
achieve convergence on 19th iterations while the 
optimization using PSO can achieve convergence only 
up to the third iteration as shown in Fig. 8. 
 
 
Table 3 Parameters of Vehicle models. 

No Parameters Values 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

Vehicle mass  
Vehicle sprung mass  
Coefficient of friction  
Front track width  
Rear track width  
Tyre rolling radius  
Wheelbase  
Distance - front axle to COG  
Distance - rear axle to COG 
Pitch stiffness constant  
Roll stiffness constant  
Centre of gravity height  
Pitch moment of inertia  
Roll moment of inertia  
Yaw moment of inertia  
Wheel moment of inertia  
Pitch damping constant  
Roll damping constant  

1700 kg 
1520 kg 
0.85 
1.5 m 
1.5 m 
0.285 m 
2.7 m 
1.11 m 
1.59 m 
4000 Nm-1 

2400 Nm-1 
0.55 m 
425 kg m2 

425 kg m2 
3125 kg m2 
1.1 kg m2 
170000 Nm-1s-1 
90000 Nm-1s-1 

 
 

 
Fig. 8 Convergence of ICA and PSO Optimization. 
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Table 4 Optimization results of ICA and PSO (Speed=13.88 m/s). 

 Convergence 
Error Parameters 

ITAE C-RMS ΔER ΔDE ΔOT Kp Ki Kd 
ICA 19 2.0523e-48 0.003487 1.4222 67.6211 0.8415 522.2821 9.1026 6.5722 

PSO 3 3.1224e-43 0.003981 1.3670 67.1499 0.6773 521.9355 10.2314 6.2524 
 
 

 
Fig. 9 The optimal shape of the MF in the FLC. 
 
 

The optimization done either using ICA or PSO is an 
iterative process until the maximum iteration equals 50, 
applied to both FLC and PID control system of the 
model vehicle with steering input in the form of a table 
of x-y trajectory (double lane change) at a constant 
speed of 13.88 m/s. This means that on control system 
has been occurred learning that begins with a random 
parameter values and in the end can determine the 
values of the optimal parameters with the error 
restrictions of the smallest lateral motion. The size of 
the error is used in the optimization process is ITAE, 
while the size of the error is used on the simulation 
model is Continues Root Mean Square Error (C-RMS 
error) as shown in Table 4. 

The error value obtained from the optimization using 
ICA is smaller than using PSO, but on optimization 
using PSO achieve faster convergence than the ICA, 
this further strengthens the assertion that the PSO is a 
method that premature in achieving convergence [11]. 

The value of ΔER, ΔDE, and ΔOT obtained is a 
multiplier factor to determine the width and position of 
each of the MF and the value of Kp, Ki and Kd is the 
expression value for the parameter Proportional, 
Integral and Derivative. The optimal shape of the MF 
can be seen in Fig. 9 and the optimal value of the width 
and the midpoint of the MF, shown in Table 5. 

The results of optimization of vehicle steering 
control system is expressed in Fig. 10 where shows that 
the movement of the vehicle with the optimal control 

system can adjust well on the desired trajectory (double 
lane change trajectory). 
 
 
Table 5 The width and midpoint of the MF yang optimal. 

ERROR INPUT 

ΔER=1.4222 Width Left Midpoint Width Right

NS -0.7111 -0.7111 0 

Z -0.7111 0 0.7111 

PS 0 0.7111 0.7111 

DELTA ERROR INPUT 

ΔDE=67.6211 Width Left Midpoint Width Right

NS -33.81055 -33.81055 0 

Z -33.81055 0 33.81055 

PS 0 33.81055 33.81055 

OUTPUT 

ΔOT=0.7617 Width Left Midpoint Width Right

NS -0.38085 -0.38085 0 

Z -0.38085 0 0.8415 

PS 0 0.38085 0.38085 
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Fig. 10 The Lateral motion and the desired trajectory (Double 
Lane Change). 
 
 

 
Fig. 11 The first maneuver of double lane change trajectory. 
 
 

 
Fig. 12 The second maneuver of double lane change 
trajectory. 
 
 
 

Figs. 11 and 12 show two of the four responses of 
the optimal control system against the desired trajectory 
during vehicle maneuvers, in Fig. 11 occurs when the 
vehicle is moving in the x direction and then veering 

towards y hence happened overshot to the x direction. 
Otherwise on Fig. 12, the vehicle is moving in the y 
direction and then veering towards x hence happened 
overshot on the y direction and in Fig. 13 are 
characteristics of the optimal control system include; 
Lateral motion error, output FLC (setting point of the 
yaw motion), the output of the yaw motion control, yaw 
motion error and the output of the vehicle steering 
control system. 

The results of the optimal control system simulation 
using ICA (FLC-PID tuned by ICA) is expressed in the 
form of C-RMS error compared with the results of the 
optimal control system simulation using a PSO (FLC-
PID tuned by PSO) both for double lane change 
trajectory (trajectory with sharp maneuver) or sinewave 
trajectory (trajectory with smooth maneuvers), as shown 
in Table 6. The overall average value of C-RMS error 
on testing using the FLC-PID tuned by ICA is smaller 
than the test FLC-PID tuned by PSO. 
 
 

 
Fig. 13 The characteristics of optimal control system. 
 
 
Table 6 Benchmark of Control Systems. 
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m/s
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PSO 

FLC–PID 
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ICA 

FLC–PID
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PSO 

1 10 2.77 0.043310 0.055950 0.011390 0.014400
2 20 5.55 0.010390 0.012580 0.004681 0.005677
3 30 8.33 0.005456 0.006690 0.002949 0.003574
4 40 11.11 0.004043 0.004799 0.002175 0.002619
5 50 13.89 0.003487 0.003981 0.001744 0.002082
6 60 16.67 0.002720 0.003458 0.001609 0.001760
7 70 19.45 time out time out 0.002833 0.001605
8 80 22.22 time out time out 0.007159 time out
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5 Conclusion 
Strategy of Optimal control system developed on the 

vehicle steering system is to always keep the movement 
of vehicle stay on the desired trajectory. At the time the 
vehicle was speeding or maneuvering, the vehicle 
should not experience a lateral force then be used of 
Fuzzy Logic Control to suppress the error of lateral 
motion, and to enhance the movement of vehicles 
spared from yawing movement then be used PID control 
to minimize the error of yaw motion. In order for both 
control system work optimally then the first required 
parameters optimized using ICA, namely the position 
and width of the MF on the input and output of the FLC 
as well as the constants of gain of the PID control. 

The results of optimization obtain the optimal 
parameter values at the time of achieved convergence 
with value ITAE 2.0523e-48. Optimal parameters that 
have been obtained embedded in the control system then 
performed simulations the vehicle steering control 
system. The simulation results can be stated that the 
optimal control system that has been built (FLC-PID 
tuned by ICA) for controlling a vehicle steering system 
always be able to maintain the movement of the vehicle 
to the desired trajectory either of the double lane change 
or sine wave trajectory with the lower error and higher 
speed limits Compared by optimal control system that 
tuned using PSO (FLC-PID tuned by PSO). 
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