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Abstract: This paper presents a study on the new design of cylindrical solid rotor 
synchronous generator. In this new design, rotor of the machine is designed in such a way 
that the required inductance values are reached to produce reluctance torque, besides 
electromagnetic torque due to field excitation. In this contribution, a combination of two 
different ferromagnetic materials is considered in the design of the rotor. In this theory, the 
tight connection between the different materials is very important from a mechanical point of 
view. In other words, this new idea and production principal has potential in some areas after 
some further research and engineering. But this paper is focused on magnetic flux-carrying 
materials and presents a study of the new design of cylindrical solid rotor synchronous 
generator (NCG). Then a comparative analysis was made between this new (NCG) and 
conventional cylindrical solid rotor synchronous generator (CCG) and the effectiveness of 
the new cylindrical solid rotor from a magnetic point of view is demonstrated. In this paper, 
mechanical and thermal aspects of design such as vibration did not analyze. 
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1 Introduction1 
Synchronous generators are basic and significant 
elements of power systems and the two main types of 
generator are salient pole and cylindrical rotor 
generators. In these machines, there is usually a three-
phase winding in the stator, whereas the rotor is 
equipped with a single-phase excitation winding 
supplied with adequate DC voltage and current. Both 
these types are synchronous machines in which the rotor 
turns in exact synchronism with the rotating magnetic 
field in the stator [1-5]. Synchronous generators 
remained the universal machines of choice for the 
generation of electric power. With the increasing of load 
in power networks, more and more interest is focused 
on the large synchronous generator. These machines 
have continuously grown in size over the years. The 
justification is based on simple economies of scale: the 
output rating of the machine per unit of weight increases 
as the size of the unit increases. Thus, it is not 
uncommon to see machines with ratings reaching up to 
1500 MVA, with the largest normally used in nuclear 
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power stations. The largest generators used in main 
power stations are usually cylindrical rotor generators. 
More commonly used in smaller and medium power 
ranges is the salient-pole generator [6-9]. 

Therefore, increasing output power of synchronous 
generator without any increase in total machine size and 
decrease in efficiency is a significant task. Hence, in 
recent years, some researchers have tried to increase the 
output power of synchronous generators by inserting 
additional permanent magnets and different problems in 
this field have investigated by these scholars [10-15]. It 
is important to know permanent magnets on the adjacent 
rotor-pole shoes may be demagnetized under short 
circuit conditions. However, the flux of the permanent 
magnet is fixed and the air gap flux weakening is 
generally achieved by applying a large demagnetizing 
current. Also, it's worth mentioning that excitation 
winding repairs can be done with difficulty by the 
existence of permanent magnets on the adjacent rotor-
pole shoes. 

On the other hand, ref [16] reports on outcomes of 
study on the impact of two different magnetic materials 
in a core structure of a current transformer. This 
construction is shown in Fig. 1. In fact, two magnetic 
cores were utilized, one made from transformer steel 
and the second made from nanocrystalline material. 
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Fig. 1 The 3-D model of the new measuring current 
transformer, proposed in [16]. 
 
 

The results of this reference [16] illustrates that, this 
construction (combine two different ferromagnetic 
materials) improves of current transformers 
measurement properties without changing the size and 
any increase in the dimensions of the current 
transformer. 

Even though the content of this research refers to a 
current transformer, which is a static industrial device, 
this theory (combination of two different ferromagnetic 
materials) may also be considered in the design of 
electrical machines. It's worth mentioning that, design 
of electrical machines is the most important activity and 
the designer of electrical machines should have perfect 
information about properties of good electrical 
materials, magnetic materials, insulating materials, 
mechanical and metallurgical properties of all types of 
steel. Materials used in design are categorized into three 
types: conducting; insulating and magnetic and the 
design of electrical machines depend mostly on the 
quality of these materials [17]. The design of 
synchronous generator must therefore integrate 
electrical conducting materials, magnetic materials, 
insulating materials, structural members, and cooling 
media, all working together under the operating 
conditions of a synchronous generator. 

As stated earlier, a combination of two different 
ferromagnetic materials may also be considered in the 
design of electrical machines. In this theory, the tight 
connection between the different materials is very 
important from a mechanical point of view. In other 
words, in mechanical respect and manufacturing 
process, this procedure might not be the easiest, but it 
has an advantage when it comes to combining different 
materials [18]. In fact, this new idea and production 
principal has potential in some areas after some further 
research and engineering. But this paper is focused on 
magnetic flux-carrying materials and presents a study of 
the new design of cylindrical solid rotor synchronous 
generator (NCG). In fact, in this paper, mechanical and 

thermal aspects of design such as vibration did not 
analyze and the effectiveness of the new cylindrical 
solid rotor from a magnetic point of view is 
demonstrated. In this study, a synchronous machine is 
designed in such a way that the required inductance 
values are reached to produce reluctance torque, besides 
electromagnetic torque due to field excitation. The 
simulation studies show that the output power of this 
generator is increased without any increase in total 
machine size and decrease in efficiency. 
 
2 Operation Principle of Salient Pole Synchronous 
Generators 

Consider the simple circuit of Fig. 2(a), consisting of 
a cylindrical rotor synchronous machine connected to an 
infinite bus system. The phasor diagram is shown in 
Fig. 2(b). 

The maximum power a cylindrical rotor 
synchronous generator can deliver to the infinite bus can 
be expressed as follows [8]: 

(1) s inf t

s

E V
p

X
δ=  

where, Ef is excitation voltage, Vt is the infinite bus 
voltage and Xs is the series impedance. Equation (1) is 
commonly referred to as the load angle characteristic 
(power-angle characteristic), and the angle is known 
as the power angle. The general form of this load-angle 
characteristic is illustrated in Fig. 2(c). On the other 
hand; consider a salient pole synchronous generator 
connected to an infinite bus system (Fig. 3(a)). The 

δ
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Fig. 2 Cylindrical rotor synchronous machine [8], (a) 
connected to an infinite bus system, (b) phasor diagram, (c) 
load angle characteristic. 
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phasor diagram of this generator is shown in Fig. 3(b). 
The maximum power a salient pole synchronous 
generator can deliver to the infinite bus can be 
expressed as follows [8]: 

(2) 
2 1 1s in ( ) s in 2

2
f t t

s q d

E V Vp
X X X

δ δ= + −  

where, the reactances Xd and Xq are, respectively, the 
direct-and quadrature-axis synchronous reactances. The 
general form of this load-angle characteristic is 
illustrated in Fig. 3(c). 

Comparing Eq. (1) with Eq. (2), the first term is the 
same as the expression achieved for a cylindrical rotor 
synchronous generator. In fact, the load angle curve of a 
cylindrical rotor synchronous machine comprises a 
single sine term only while in salient pole synchronous 
generators, power-angle characteristic has two terms. 
The first term is the fundamental component due to field 
excitation and the second term includes the effect of 
salient pole. This term is the second harmonic 
component due to reluctance torque and it represents the 

fact that the air-gap flux linkage produces torque, 
tending to align the field poles in the position of 
minimum [6-9]. The reluctance torque is independent of 
field excitation and in a cylindrical rotor machine the 
reluctance torque is zero. Therefore, in synchronous 
machine, the dimensioning of the magnetic circuit has a 
notable effect on the operation of the machine. 

It is worth highlighting that, another important issue 
should be considered in the power-angle characteristic 
is the static stability limit of the machine. In fact, the 
static stability limit of the machine due to the presence 
of reluctance torque occurs at δ = 45� and the static 
stability limit of the machine due to the field excitation 
torque occurs at δ = 90�. Finally, the static stability 
limit of the machine due to the presence of both 
reluctance torque and field excitation torque occurs at 
δ between 45-90. Because of the reluctance torque, a 
salient-pole machine is "stiffer" than one with a 
cylindrical rotor; i.e., a salient-pole machine develops a 
given torque at a smaller value of δ , and the maximum 
torque which can be developed is greater. In other 
words, due to the reluctance torque, the salient-pole 
generator has a higher maximum power than an 
equivalent non-salint pole generator at a smaller value 
of δ. 
 
3 Design Criteria and Key Points 

Design of electrical machines is a time-consuming 
task and the aim of design is to determine the sizes of 
each part of the machine, the material specification, 
prepare the drawings and equip to manufacturing units. 
Design is the most significant activity and like all 
machine types, synchronous generators are designed 
through some steps. These steps are listed as follows 
[6]: 

1) Compute output coefficient, main dimensions of 
stator core D, L and flux/pole, turns/phase, the number 
of slots, checking the peripheral speed and slot loading. 

2) Compute the size of the slot, conductor size, 
checking current density, slot balance. Compute tooth 
flux density, depth of core, weight of copper, copper 
losses and leakage reactance. 

3) Compute air gap length, rotor diameter, 
dimensions of poles and excitation coils. 

4) Compute carter coefficient and ampere-turns for 
air gap, stator tooth, core, poles, rotor core and total no-
load AT. 

5) Computation and planning of open circuit 
characteristic. 

6) Computation of excitation ampere-turns at rated 
load and power factor. 

7) Compute copper size, number of turns in 
excitation winding. Computation of iron loss and total 
losses and efficiency. 

8) Calculation of temp-rises, total weight and 
KG/KVA. 
 

 
 
 
 
 
 

(a) 
 

(b) 

 
(c) 

Fig. 3 Salient pole synchronous generator [8], (a) connected to 
an infinite bus system, (b) phasor diagram, (c) load angle 
characteristic. 
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4 Design Procedures of Synchronous Generators 
The theoretical design procedure for a synchronous 

machine is explained in detail in [6, 7, 19, 20] and is 
used to design the synchronous generators. On the other 
hand, it is not the primary purpose of this paper to 
discuss the theoretical design procedure for synchronous 
machine; however, a general review of the main steps 
and criteria is presented in this section. Real machine 
design starts with the choice of the main dimensions of 
the machine, i.e. L which is the machine's axial length 
and D which is stator inside diameter or air gap 
diameter. These two parameters are the most critical and 
earlier dimensions in machine design which other 
dimensions and parameters are extremely depending on 
them. The identity of the machine is somehow specified 
by choosing these two dimensions. The relationship 
between apparent input power and main dimensions of 
the machine can be expressed as follows [6, 19, 20]: 

2
0 c o s

o u t
s

PQ C D L n
η φ

= =                                  (3) 

where, Q is in KVA and ns is speed (rps) and C0 is 
output coefficient and is calculated as follows: 

2 3
0 1 .1 1 . . . 1 0a v wC a c B Kπ −= × ×                (4) 
As stated earlier, in design of electrical machine, 

D2L is a significant parameter. From these main 
dimensions, the remainder of the synchronous machine 
dimensions can be calculated. On the other hand, in 
design of electrical machines, determine of slot 
dimensions is very important because it significantly 
affects the magnetic flux distribution and saturation 
inside the machine. 

A schematic illustration of stator core of the low 
power of a synchronous generator is shown in Figs. 4(a) 
and 4(b) while stator lamination of a larger synchronous 
generator is illustrated in Fig. 4(c). Also, parameters and 
dimensions are shown in these figures. According to 
Fig. 4(c), it's worth mentioning that stator slots of larger 
synchronous generator are rectangular and teeth are 
trapezoidal. Consequently, manufacturing and 
maintenance procedure is easy and less time consuming [21]. 

The equation governing the stator tooth (Bt) and core 
(Bbi) flux density-specific magnetic loading (Bav) 
relationship of the machine can be expressed as follows 
[19, 20]: 

(5),  

where wt is the minimum stator tooth width and  is 
the minimum height of stator yoke. ψ is the ratio of pole 
arc to pole pitch, D is the inner diameter of the stator. 

 is the minimum height of stator yoke and P is the 
number of poles. Also, one of the inherent limitations in 
the design of electrical machines is the saturation flux 
density of magnetic materials. Hence, 

(6) ,  

  
(a) 

 
(b) 

 
(c) 

Fig. 4 Dimensions and parameters. (a) Stator slot. (b) Stator 
core of low power of synchronous machine. (c) Stator 
lamination of large synchronous machine [21]. 
 
 

Therefore: 

(7),  

Maximum tooth width (tt) is given by the following: 

(8) 

where st is the minimum stator slot width, Di is the 
inner diameter of the stator and Z is the number of slots 
in the stator. Also, according to Fig. 4 other important 
equations can be expressed as follows [20]: 
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one, is increased by 2.92 % and 4.1 % under the unity 
and lagging power factor load conditions, respectively. 
Also, as illustrated in Figs. 11(a) and 11(b), the 
armature current is increased by 2.31% and 4.55% 
under these load conditions, respectively. 

On the other hand, Fig. 12 shows the typical line 
current and line induced voltage in the stator winding of 
two designed synchronous generators under leading 

power factor conditions with 880 A of excitation current 
as obtained by FEA. As stated earlier, in the power 
network most of the demands are inductive loads. 
However Table 6 presents the output power of two CCG 
and NCG synchronous generators, as the excitation 
current increases from 700 to 880 A for leading power 
factor conditions. In this condition the output power of 
the generator is increased 2% (average). 

 
 
Table 4 Output power of two designed synchronous generators for unity power factor.

Excitation  
current (A) 

Line voltage  
(kV-rms) 

Stator current 
(kA-rms) 

PF=1 
Output power of generators (MVA) 

CCG NCG CCG NCG CCG NCG Increase 
1400 15.7 16.17 2.77 2.83 75 79.14 5.513% 

1200 14.98 15.28 2.65 2.7 68.74 71.21 3.61% 

1000 13.95 14.01 2.49 2.51 59.99 61.07 1.8% 

800 12.45 12.48 2.21 2.22 47.67 47.92 0.52% 
 
 
 

 
(a) 

 
(b) 

Fig. 9 Line current and line induced voltage in the stator winding of two designed cylindrical solid rotor synchronous generators 
under unity power factor conditions with 1400 A of excitation current. (a) CCG generator. (b) NCG generator. 
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6 Conclusion 

It is important to know with the increasing of load in 
power networks, more and more interest is focused on 
the large synchronous generator to produce more power. 
Hence, increasing of output power of synchronous 
generator without any increase in total machine size is a 
significant task. In this paper a novel design of 
cylindrical solid rotor synchronous generator has been 
presented to produce more power. In conventional 
cylindrical solid rotor synchronous generator, the direct 
axis reactance and quadrature axis reactance are equal. 
Therefore, in this generator, the reluctance torque is 
zero, but in this new design, the rotor is built of two 
different materials in such a way that the required 
inductance values are reached to produce reluctance 
torque, besides electromagnetic torque due to field 
excitation. The extensive simulation results show that 
the proposed method for the design of new cylindrical 
solid rotor synchronous generator is useful and effective 
to increase of output power without any increase in total 

machine size. In fact, the effectiveness of the new 
cylindrical solid rotor synchronous generator from a 
magnetic point of view is demonstrated. In this paper, 
mechanical and thermal aspects of design such as 
vibration did not analyze. 
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