Showing 6 results for Azmi
M. Evazi, M. Shahsavan, M. Heidari, A. Razminia,
Volume 14, Issue 4 (December 2018)
Abstract
This paper addresses a new method for decreasing error in secure chaotic communication which utilizes an adaptive law in demodulator part. The basic tools in this process are the Total Least Square as the fundamental technique in demodulating section and a chaotic signal as the carrier one which impose some complexities on the overall system. This algorithm may be used in digital filter for estimating parameters with lower error. Using this approach an improvement can be achieved in estimating the desired signal in comparison with two famous methods, namely, ordinary Least Mean Square (LMS) and Constrained-Stability LMS (CS-LMS). An illustrative example has been used to verify the presented technique through numerical simulation.
Muhammad Syafiq Sheik Azmi, Muhamad Hisyam Rosle, Muhammad Nazrin Shah Shahrol Aman, Ali Akbar Abd Aziz, Chandran Tetegre,
Volume 21, Issue 2 (Special Issue on the 1st International Conference on ELECRiS 2024 Malaysia - June 2025)
Abstract
The automation of Printed Circuit Board (PCB) assembly using robotic arms is increasingly essential in the electronics manufacturing industry, driven by the need for high precision and efficiency. A significant challenge in this process is the delicate handling and accurate placement of various types of PCB boards, such as SATA M.2, mSATA, and SATA Slim. This research aims to design and evaluate a vacuum-based robotic gripper using a vacuum generator and soft suction cup for the pick-and-place operations of electronic PCB boards. The methodology involves the design, fabrication, and experimental testing of the vacuum gripper, analyzing its performance across different feed pressures and vacuum levels. The principal results show that the vacuum gripper is highly effective in securely handling different PCB types, with success rates improving significantly at higher feed pressures, particularly at 0.3 MPa where all three PCB types attained perfect success rates of 100%. Specifically, the vacuum flow rates at a vacuum level of 80 kPa were 0.0010 NL/s, 0.002 NL/s, and 0.0030 NL/s for feed pressures of 0.1 MPa, 0.2 MPa, and 0.3 MPa, respectively. These findings confirm the vacuum gripper's capability to enhance automation in PCB assembly, offering a scalable and adaptable solution that meets the industry's demands for precision, efficiency, and reliability. Overall, the vacuum gripper demonstrated a 100% success rate for all tested PCB types at optimal feed pressure, significantly improving. This study provides a foundation for future improvements in robotic handling systems for delicate electronic components.
Syazwan Ahmad Sabri, Siti Rafidah Abdul Rahim, Azralmukmin Azmi, Syahrul Ashikin Azmi, Muhamad Hatta Hussain, Ismail Musirin,
Volume 21, Issue 2 (Special Issue on the 1st International Conference on ELECRiS 2024 Malaysia - June 2025)
Abstract
The Marine Predator Algorithm (MPA) and Osprey Optimization Algorithm (OOA) are nature-inspired metaheuristic techniques used for optimizing the location and sizing of distributed generation (DG) in power distribution systems. MPA simulates marine predators' foraging strategies through Lévy and Brownian movements, while OOA models the hunting and survival tactics of ospreys, known for their remarkable fishing skills. Effective placement and sizing of DG units are crucial for minimizing network losses and ensuring cost efficiency. Improper configurations can lead to overcompensation or undercompensation in the network, increasing operational costs. Different DG technologies, such as photovoltaic (PV), wind, microturbines, and generators, vary significantly in cost and performance, highlighting the importance of selecting the right models and designs. This study compares MPA and OOA in optimizing the placement of multiple DGs with two types of power injection which are active and reactive power. Simulations on the IEEE 69-bus reliability test system, conducted using MATLAB, demonstrated MPA’s superiority, achieving a 69% reduction in active power losses compared to OOA’s 61%, highlighting its potential for more efficient DG placement in power distribution systems. The proposed approach incorporates a DG model encompassing multiple technologies to ensure economic feasibility and improve overall system performance.
Ahmad Syukri Abd Rahman, Mohamad Nur Khairul Hafizi Rohani, Nur Dini Athirah Gazata, Afifah Shuhada Rosmi, Ayob Nazmi Nanyan, Aiman Ismail Mohamed Jamil, Mohd Helmy Halim Abdul Majid, Normiza Masturina Samsuddin,
Volume 21, Issue 2 (Special Issue on the 1st International Conference on ELECRiS 2024 Malaysia - June 2025)
Abstract
Partial discharge (PD) is a significant concern in the operation of rotating machines such as generators and motors, as it can lead to insulation degradation over time, reducing the reliability and lifespan of the machines. To monitor PD activity, coupling capacitors (CC) are widely used as sensors for online PD detection, as they can effectively capture PD pulses in high-voltage (HV) rotating machines. The primary objective of this research is to measure and analyze PD signals using a CC sensor for HV rotating machines under varying input voltages and frequencies, following the guidelines of the IEC 60270 standard and utilizing the MPD 600 device. The experimental setup includes performing insulation resistance (IR) testing, PD calibration, and PD measurement. Additionally, this paper provides a detailed study of PD signal characteristics, specifically focusing on phase-resolved partial discharge (PRPD) patterns, to understand the behavior of PD in HV rotating machines, enhancing fault diagnosis and preventive maintenance strategies.
Humairah Mansor, Shazmin Aniza Abdul Shukor, Razak Wong Chen Keng, Nurul Syahirah Khalid,
Volume 21, Issue 2 (Special Issue on the 1st International Conference on ELECRiS 2024 Malaysia - June 2025)
Abstract
Building fixtures like lighting are very important to be modelled, especially when a higher level of modelling details is required for planning indoor renovation. LIDAR is often used to capture these details due to its capability to produce dense information. However, this led to the high amount of data that needs to be processed and requires a specific method, especially to detect lighting fixtures. This work proposed a method named Size Density-Based Spatial Clustering of Applications with Noise (SDBSCAN) to detect the lighting fixtures by calculating the size of the clusters and classifying them by extracting the clusters that belong to lighting fixtures. It works based on Density-Based Spatial Clustering of Applications with Noise (DBSCAN), where geometrical features like size are incorporated to detect and classify these lighting fixtures. The final results of the detected lighting fixtures to the raw point cloud data are validated by using F1-score and IoU to determine the accuracy of the predicted object classification and the positions of the detected fixtures. The results show that the proposed method has successfully detected the lighting fixtures with scores of over 0.9. It is expected that the developed algorithm can be used to detect and classify fixtures from any 3D point cloud data representing buildings.
Ahmad Syukri Abd Rahman, Mohamad Nur Khairul Hafizi Rohani, Nur Dini Athirah Gazata, Afifah Shuhada Rosmi, Ayob Nazmi Nanyan, Aiman Ismail Mohamed Jamil, Mohd Helmy Halim Abdul Majid, Normiza Masturina Samsuddin,
Volume 21, Issue 2 (Special Issue on the 1st International Conference on ELECRiS 2024 Malaysia - June 2025)
Abstract
Partial discharge (PD) is a critical phenomenon in electrical systems, particularly in high-voltage (HV) equipment like transformers, cables, switchgear, and rotating machines. In rotating machines such as generators and motors, PD is a significant concern as it leads to insulation degradation, potentially resulting in catastrophic failure. Effective and reliable diagnostic techniques are essential for detecting and analyzing PD to ensure the operational safety and longevity of such equipment. Various PD detection methods have been developed, including coupling capacitor (CC), high-frequency current transformer (HFCT), and ultra-high frequency (UHF) techniques, each offering unique advantages in assessing the condition of HV electrical systems. Among these, coupling capacitors have gained significant attention due to their ability to improve the accuracy, sensitivity, and efficiency of PD detection in rotating machines. This study focuses on the advancements in coupling capacitor-based techniques and their critical role in enhancing PD diagnostics for monitoring and maintaining high-voltage rotating machinery.