Volume 17, Issue 2 (June 2021)                   IJEEE 2021, 17(2): 1377-1377 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Habibolahzadeh M, Jalilian A. Rating Reduction and Optimized DC-Link Voltage of the HPQC in Co-Phase Traction Power System. IJEEE 2021; 17 (2) :1377-1377
URL: http://ijeee.iust.ac.ir/article-1-1377-en.html
Abstract:   (3022 Views)
Electric traction trains are huge non-linear single-phase loads influencing adversely on power quality parameters on the grid side. Hybrid power quality conditioner (HPQC) has been utilized to compensate current unbalance, harmonics, and low power factor in the co-phase traction system simultaneously. By incrementing the traction load, the rating of the HPQC increases and may constraints its application. In this paper, a C-type filter is designed to compensate for some part of the load reactive power while the HPQC compensates the remaining part of the load reactive power. Hence, the capacity of the HPQC is reduced in full compensation (FC) mode compared to the conventional configuration. The satisfactory performance of the HPQC is associated with its DC-link operating voltage. Therefore, the Genetic algorithm (G.A) is adopted to optimize the DC-link voltage performance. Simulation verifications are performed to illustrate the usefulness of the proposed configuration. The simulation results show an 18.86% reduction in the rating of the HPQC with optimized DC-link voltage.
Full-Text [PDF 1160 kb]   (1181 Downloads)    
Type of Study: Research Paper | Subject: Power Electronics Applications
Received: 2018/11/06 | Revised: 2020/08/17 | Accepted: 2020/09/04

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.